Halogen Bonding Interactions in Halopyridine–Iodine Monochloride Complexes

2019 ◽  
Vol 20 (2) ◽  
pp. 543-551
Author(s):  
Firas F. Awwadi ◽  
Deeb Taher ◽  
Mohammed H. Kailani ◽  
Manal I. Alwahsh ◽  
Fadwa Odeh ◽  
...  
1975 ◽  
Vol 72 ◽  
pp. 271-271
Author(s):  
Anjana Das Gupta ◽  
Rama Basu
Keyword(s):  

1981 ◽  
Vol 46 (03) ◽  
pp. 593-596 ◽  
Author(s):  
Linda C Knight ◽  
Andrei Z Budzynski ◽  
Stephanie A Olexa

SummaryThe properties of human fibrinogen labeled with 125-Iodine using Iodogen (1, 3, 4, 6-tetrachloro-3α, 6α-diphenylglycoluril) as an oxidizing agent were compared with those of an iodine monochloride labeled counterpart. It was found that thrombin clottability, binding to staphylococci, the relative specific radioactivity of the Aα, Bβ, and γ chains and in vivo clearance from plasma in rabbits were the same in these two labeled fibrinogen preparations. Labeling efficiency was higher when iodogen was used. It is concluded that human fibrinogen labeled with radioiodine using the Iodogen technique is suitable for studies in vitro and in vivo.


2017 ◽  
Author(s):  
Manoj Kumar Kesharwani ◽  
Nitai Sylvetsky ◽  
Debashree Manna ◽  
Jan M.L. Martin

<p>We have re-evaluated the X40x10 benchmark for halogen bonding using conventional and explicitly correlated coupled cluster methods. For the aromatic dimers at small separation, improved CCSD(T)–MP2 “high-level corrections” (HLCs) cause substantial reductions in the dissociation energy. For the bromine and iodine species, (n-1)d subvalence correlation increases dissociation energies, and turns out to be more important for noncovalent interactions than is generally realized. As in previous studies, we find that the most efficient way to obtain HLCs is to combine (T) from conventional CCSD(T) calculations with explicitly correlated CCSD-F12–MP2-F12 differences.</p>


1986 ◽  
Vol 51 (10) ◽  
pp. 2077-2082 ◽  
Author(s):  
Jan Langmaier ◽  
František Opekar

Gold porous membrane electrode has been used for the potentiometric determination of small amounts of sulfur dioxide absorbed in the solutions of sodium tetrachloromercurate or sodium hydroxide. Sulfur dioxide is released by the reaction with an acid into a stream of nitrogen and led to the electrode immersed into the solution of iodine monochloride. Part of SO2 penetrates through the membrane pores into the solution where it is oxidized. The electrode redox potential change is a measure of the SO2 concentration in the absorption solution. In the solution of 1 . 10-5 M[ICl2]- in 0.02 M-HClO4 the limit of quantitation was found to be 0.07 ng SO2 . ml-1. The relative standard deviations of 1.4% and 2.5% were found for the determinations of 10 ng and 0.5 ng of SO2, respectively. Higher concentrations of H2S interfere only in the hydroxide solution. About 10 samples can be analyzed per one hour.


2013 ◽  
Vol 117 (13) ◽  
pp. 2827-2834 ◽  
Author(s):  
Pavel V. Gushchin ◽  
Maxim L. Kuznetsov ◽  
Matti Haukka ◽  
Vadim Yu. Kukushkin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document