Debromination of Tetrabromobisphenol A by Nanoscale Zerovalent Iron: Kinetics, Influencing Factors, and Pathways

2012 ◽  
Vol 51 (25) ◽  
pp. 8378-8385 ◽  
Author(s):  
Kunde Lin ◽  
Jiafeng Ding ◽  
Xinwen Huang
2019 ◽  
Vol 53 (14) ◽  
pp. 8105-8114 ◽  
Author(s):  
Jun Wu ◽  
Jian Zhao ◽  
Jun Hou ◽  
Raymond Jianxiong Zeng ◽  
Baoshan Xing

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Tuan Nguyen Quoc ◽  
Khanh Hoang Nguyen ◽  
Huong Ngo Thi Thuy ◽  
Nguyen Thi Hanh Tien ◽  
Chau Tran Thi Minh ◽  
...  

This study proposed a sequential redox process to partially degrade tetrabromobisphenol A (TBBPA) within a reactor to a great extent. After 72 hours in an anoxic environment, 20 ppm of TBBPA could be effectively degraded by sulfurized zerovalent iron nanoparticles (S-nZVI) at concentrations of 2 g L-1 and 4 g L-1. Biphenol A (BPA) together with tri-, di-, and monobromobisphenol A was detected by high-performance liquid chromatography (HPLC) suggesting that TBBPA was debrominated by S-nZVI in a stepwise manner. Following the S-nZVI treatment, a persulfate-advanced oxidation process (PS-AOP) system with persulfate concentrations varied from 5 to 20 mM was incorporated to degrade the final debrominated byproduct, BPA, for 2 hours. The two-stage anoxic/oxic reactions at the same reactor with initial conditions (0.037 mM TBBPA, 4 g L-1 of S-nZVI, pH 6 in anoxic stage, 20 mM of PS in the latter oxic stage) were investigated. The sulfurized layer played an important role in such a system and hypothetically contributes to increasing electron transfer from Fe0 core as well as hydrophobicity of the NP surface. It was demonstrated that the S-nZVI/PS-AOP system could effectively remediate TBBPA and BPA and consequently provide a promising strategy to remedy brominated organic pollutants in the environment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jien Ye ◽  
Yi Wang ◽  
Qiao Xu ◽  
Hanxin Wu ◽  
Jianhao Tong ◽  
...  

AbstractPassivation of nanoscale zerovalent iron hinders its efficiency in water treatment, and loading another catalytic metal has been found to improve the efficiency significantly. In this study, Cu/Fe bimetallic nanoparticles were prepared by liquid-phase chemical reduction for removal of hexavalent chromium (Cr(VI)) from wastewater. Synthesized bimetallic nanoparticles were characterized by transmission electron microscopy, Brunauer–Emmet–Teller isotherm, and X-ray diffraction. The results showed that Cu loading can significantly enhance the removal efficiency of Cr(VI) by 29.3% to 84.0%, and the optimal Cu loading rate was 3% (wt%). The removal efficiency decreased with increasing initial pH and Cr(VI) concentration. The removal of Cr(VI) was better fitted by pseudo-second-order model than pseudo-first-order model. Thermodynamic analysis revealed that the Cr(VI) removal was spontaneous and endothermic, and the increase of reaction temperature facilitated the process. X-ray photoelectron spectroscopy (XPS) analysis indicated that Cr(VI) was completely reduced to Cr(III) and precipitated on the particle surface as hydroxylated Cr(OH)3 and CrxFe1−x(OH)3 coprecipitation. Our work could be beneficial for the application of iron-based nanomaterials in remediation of wastewater.


Chemosphere ◽  
2021 ◽  
pp. 130766
Author(s):  
Xiao Wang ◽  
Yue Zhang ◽  
Zhiwei Wang ◽  
Chunhua Xu ◽  
Paul G. Tratnyek

2014 ◽  
Vol 280 ◽  
pp. 504-513 ◽  
Author(s):  
Yiming Su ◽  
Adeyemi S. Adeleye ◽  
Xuefei Zhou ◽  
Chaomeng Dai ◽  
Weixian Zhang ◽  
...  

2010 ◽  
Vol 12 (1) ◽  
pp. 114-122 ◽  
Author(s):  
Mallikarjuna N. Nadagouda ◽  
Alicia B. Castle ◽  
Richard C. Murdock ◽  
Saber M. Hussain ◽  
Rajender S. Varma

Sign in / Sign up

Export Citation Format

Share Document