scholarly journals Modeling Value-Based Decision-Making Policies Using Genetic Programming

2020 ◽  
Vol 79 (3-4) ◽  
pp. 113-121
Author(s):  
Angelo Pirrone ◽  
Fernand Gobet

Abstract. An important way to develop models in psychology and cognitive science is to express them as computer programs. However, computational modeling is not an easy task. To address this issue, some have proposed using artificial-intelligence (AI) techniques, such as genetic programming (GP) to semiautomatically generate models. In this paper, we establish whether models used to generate data can be recovered when GP evolves models accounting for such data. As an example, we use an experiment from decision-making which addresses a central question in decision-making research, namely, to understand what strategy, or “policy,” agents adopt in order to make a choice. In decision-making, this often means understanding the policy that best explains the distribution of choices and/or reaction times of two-alternative forced-choice decisions. We generated data from three models using different psychologically plausible policies and then evaluated the ability and extent of GP to correctly identify the true generating model among the class of virtually infinite candidate models. Our results show that, regardless of the complexity of the policy, GP can correctly identify the true generating process. Given these results, we discuss implications for cognitive science research and computational scientific discovery as well as possible future applications.

Author(s):  
Richard S. Segall ◽  
Neha Gupta

In this chapter, a discussion is presented of what a supercomputer really is, as well as of both the top few of the world's fastest supercomputers and the overall top 500 in the world. Discussions are also of cognitive science research using supercomputers for artificial intelligence, architectural classes of supercomputers, and discussion and visualization using tables and graphs of global supercomputing comparisons across different countries. Discussion of supercomputing applications and overview of other book chapters of the entire book are all presented. This chapter serves as an introduction to the entire book and concludes with a summary of the topics of the remaining chapters of this book.


2021 ◽  
Author(s):  
Tarek R. Besold ◽  
Artur d’Avila Garcez ◽  
Sebastian Bader ◽  
Howard Bowman ◽  
Pedro Domingos ◽  
...  

The study and understanding of human behaviour is relevant to computer science, artificial intelligence, neural computation, cognitive science, philosophy, psychology, and several other areas. Presupposing cognition as basis of behaviour, among the most prominent tools in the modelling of behaviour are computational-logic systems, connectionist models of cognition, and models of uncertainty. Recent studies in cognitive science, artificial intelligence, and psychology have produced a number of cognitive models of reasoning, learning, and language that are underpinned by computation. In addition, efforts in computer science research have led to the development of cognitive computational systems integrating machine learning and automated reasoning. Such systems have shown promise in a range of applications, including computational biology, fault diagnosis, training and assessment in simulators, and software verification. This joint survey reviews the personal ideas and views of several researchers on neural-symbolic learning and reasoning. The article is organised in three parts: Firstly, we frame the scope and goals of neural-symbolic computation and have a look at the theoretical foundations. We then proceed to describe the realisations of neural-symbolic computation, systems, and applications. Finally we present the challenges facing the area and avenues for further research.


2019 ◽  
Author(s):  
Wei-Ji Ma ◽  
Bas van Opheusden

Research on artificial intelligence and research on human intelligence rely on similar conceptual foundations and have long inspired each other. However, achieving concrete synergy has been difficult, with one obstacle being a lack of alignment of the tasks used in both fields. Artificial intelligence research has traditionally focused on tasks that are challenging to solve, often using human performance as a benchmark to surpass. By contrast, cognitive science and psychology have moved towards tasks that are simple enough to allow for detailed computational modeling of people's choices. These divergent objectives have led to a divide in the complexity of tasks studied, both in perception and cognition. The purpose of this paper is to explore the middle ground: are there tasks that are reasonably attractive to both fields and could provide fertile ground for synergy?


2022 ◽  
Vol 12 ◽  
Author(s):  
Miriam Sebold ◽  
Hao Chen ◽  
Aleyna Önal ◽  
Sören Kuitunen-Paul ◽  
Negin Mojtahedzadeh ◽  
...  

Background: Prejudices against minorities can be understood as habitually negative evaluations that are kept in spite of evidence to the contrary. Therefore, individuals with strong prejudices might be dominated by habitual or “automatic” reactions at the expense of more controlled reactions. Computational theories suggest individual differences in the balance between habitual/model-free and deliberative/model-based decision-making.Methods: 127 subjects performed the two Step task and completed the blatant and subtle prejudice scale.Results: By using analyses of choices and reaction times in combination with computational modeling, subjects with stronger blatant prejudices showed a shift away from model-based control. There was no association between these decision-making processes and subtle prejudices.Conclusion: These results support the idea that blatant prejudices toward minorities are related to a relative dominance of habitual decision-making. This finding has important implications for developing interventions that target to change prejudices across societies.


2020 ◽  
Author(s):  
Avishek Choudhury

UNSTRUCTURED Objective: The potential benefits of artificial intelligence based decision support system (AI-DSS) from a theoretical perspective are well documented and perceived by researchers but there is a lack of evidence showing its influence on routine clinical practice and how its perceived by care providers. Since the effectiveness of AI systems depends on data quality, implementation, and interpretation. The purpose of this literature review is to analyze the effectiveness of AI-DSS in clinical setting and understand its influence on clinician’s decision making outcome. Materials and Methods: This review protocol follows the Preferred Reporting Items for Systematic Reviews and Meta- Analyses reporting guidelines. Literature will be identified using a multi-database search strategy developed in consultation with a librarian. The proposed screening process consists of a title and abstract scan, followed by a full-text review by two reviewers to determine the eligibility of articles. Studies outlining application of AI based decision support system in a clinical setting and its impact on clinician’s decision making, will be included. A tabular synthesis of the general study details will be provided, as well as a narrative synthesis of the extracted data, organised into themes. Studies solely reporting AI accuracy an but not implemented in a clinical setting to measure its influence on clinical decision making were excluded from further review. Results: We identified 8 eligible studies that implemented AI-DSS in a clinical setting to facilitate decisions concerning prostate cancer, post traumatic stress disorder, cardiac ailment, back pain, and others. Five (62.50%) out of 8 studies reported positive outcome of AI-DSS. Conclusion: The systematic review indicated that AI-enabled decision support systems, when implemented in a clinical setting and used by clinicians might not ensure enhanced decision making. However, there are very limited studies to confirm the claim that AI based decision support system can uplift clinicians decision making abilities.


Sign in / Sign up

Export Citation Format

Share Document