Exploring the therapeutic potential of participation in prostate cancer online support communities: Processes and outcomes

2013 ◽  
Author(s):  
Kasia Campbell ◽  
Neil Coulson ◽  
Heather Buchanan
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Paul Rogowski ◽  
Mack Roach ◽  
Nina-Sophie Schmidt-Hegemann ◽  
Christian Trapp ◽  
Rieke von Bestenbostel ◽  
...  

Abstract Background Due to improved imaging sensitivity, the term “oligometastatic” prostate cancer disease is diagnosed more often, leading to an increasing interest in metastasis-directed therapy (MDT). There are two types of radiation based MDT applied when treating oligometastatic disease: (1) stereotactic body radiation therapy (SBRT) generally used for bone metastases; or (2) SBRT for isolated nodal oligometastases combined with prophylactic elective nodal radiotherapy. This review aims to summarize current evidence data, which may shed light on the optimal management of this heterogeneous group of patients. Methods A systematic review of the Medline database through PubMed was performed according to PRISMA guidelines. All relevant studies published up to November 2020 were identified and screened. Fifty-six titles were included. Besides outcome parameters, different prognostic and predictive factors were assessed, including site of metastases, time between primary treatment and MDT, use of systemic therapies, hormone sensitivity, as well as pattern of recurrence. Findings Evidence consists largely of retrospective case series and no consistent precise definition of oligometastasis exists, however, most investigators seem to acknowledge the need to distinguish between patients presenting with what is frequently called “synchronous” versus “metachronous” oligometastatic disease. Available data on radiotherapy as MDT demonstrate high local control rates and a small but relevant proportion of patients without progressive disease after 2 years. This holds true for both hormone sensitive and castration resistant prostate cancer diseases. The use of 68Ga-PSMA PET/CT for staging increased dramatically. Radiation doses and field sizes varied considerably among the studies. The search for relevant prognostic and predictive factors is ongoing. Conclusions To our best knowledge this review on oligometastatic prostate cancer included the largest number of original articles. It demonstrates the therapeutic potential and challenges of MDT for oligometastatic prostate cancer. Prospective studies are under way and will provide further high-level evidence.


2016 ◽  
Vol 16 (10) ◽  
pp. 1205-1229 ◽  
Author(s):  
Bao Vue ◽  
Sheng Zhang ◽  
Qiao-Hong Chen

2022 ◽  
Vol 12 ◽  
Author(s):  
Sicon Mitra ◽  
Uttpal Anand ◽  
Niraj Kumar Jha ◽  
Mahipal S. Shekhawat ◽  
Suchismita Chatterjee Saha ◽  
...  

Piperine and piperidine are the two major alkaloids extracted from black pepper (Piper nigrum); piperidine is a heterocyclic moiety that has the molecular formula (CH2)5NH. Over the years, many therapeutic properties including anticancer potential of these two compounds have been observed. Piperine has therapeutic potential against cancers such as breast cancer, ovarian cancer, gastric cancer, gliomal cancer, lung cancer, oral squamous, chronic pancreatitis, prostate cancer, rectal cancer, cervical cancer, and leukemia. Whereas, piperidine acts as a potential clinical agent against cancers, such as breast cancer, prostate cancer, colon cancer, lung cancer, and ovarian cancer, when treated alone or in combination with some novel drugs. Several crucial signalling pathways essential for the establishment of cancers such as STAT-3, NF-κB, PI3k/Aκt, JNK/p38-MAPK, TGF-ß/SMAD, Smac/DIABLO, p-IκB etc., are regulated by these two phytochemicals. Both of these phytochemicals lead to inhibition of cell migration and help in cell cycle arrest to inhibit survivability of cancer cells. The current review highlights the pharmaceutical relevance of both piperine and piperidine against different types of cancers.


2021 ◽  
Vol 206 (Supplement 3) ◽  
Author(s):  
Fabio Frech ◽  
Omar Rosete ◽  
Khushi Shah ◽  
Fakiha Firdaus ◽  
Joshua Hare ◽  
...  

Tumor Biology ◽  
2018 ◽  
Vol 40 (4) ◽  
pp. 101042831877177 ◽  
Author(s):  
Andrea Mancini ◽  
Alessandro Colapietro ◽  
Simona Pompili ◽  
Andrea Del Fattore ◽  
Simona Delle Monache ◽  
...  

Morbidity in advanced prostate cancer patients is largely associated with bone metastatic events. The development of novel therapeutic strategies is imperative in order to effectively treat this incurable stage of the malignancy. In this context, Akt signaling pathway represents a promising therapeutic target able to counteract biochemical recurrence and metastatic progression in prostate cancer. We explored the therapeutic potential of a novel dual PI3 K/mTOR inhibitor, X480, to inhibit tumor growth and bone colonization using different in vivo prostate cancer models including the subcutaneous injection of aggressive and bone metastatic (PC3) and non-bone metastatic (22rv1) cell lines and preclinical models known to generate bone lesions. We observed that X480 both inhibited the primary growth of subcutaneous tumors generated by PC3 and 22rv1 cells and reduced bone spreading of PCb2, a high osteotropic PC3 cell derivative. In metastatic bone, X480 inhibited significantly the growth and osteolytic activity of PC3 cells as observed by intratibial injection model. X480 also increased the bone disease-free survival compared to untreated animals. In vitro experiments demonstrated that X480 was effective in counteracting osteoclastogenesis whereas it stimulated osteoblast activity. Our report provides novel information on the potential activity of PI3 K/Akt inhibitors on the formation and progression of prostate cancer bone metastases and supports a biological rationale for the use of these inhibitors in castrate-resistant prostate cancer patients at high risk of developing clinically evident bone lesions.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1887 ◽  
Author(s):  
Francesco Bonollo ◽  
George N. Thalmann ◽  
Marianna Kruithof-de Julio ◽  
Sofia Karkampouna

Tumors strongly depend on their surrounding tumor microenvironment (TME) for growth and progression, since stromal elements are required to generate the optimal conditions for cancer cell proliferation, invasion, and possibly metastasis. Prostate cancer (PCa), though easily curable during primary stages, represents a clinical challenge in advanced stages because of the acquisition of resistance to anti-cancer treatments, especially androgen-deprivation therapies (ADT), which possibly lead to uncurable metastases such as those affecting the bone. An increasing number of studies is giving evidence that prostate TME components, especially cancer-associated fibroblasts (CAFs), which are the most abundant cell type, play a causal role in PCa since the very early disease stages, influencing therapy resistance and metastatic progression. This is highlighted by the prognostic value of the analysis of stromal markers, which may predict disease recurrence and metastasis. However, further investigations on the molecular mechanisms of tumor–stroma interactions are still needed to develop novel therapeutic approaches targeting stromal components. In this review, we report the current knowledge of the characteristics and functions of the stroma in prostate tumorigenesis, including relevant discussion of normal prostate homeostasis, chronic inflammatory conditions, pre-neoplastic lesions, and primary and metastatic tumors. Specifically, we focus on the role of CAFs, to point out their prognostic and therapeutic potential in PCa.


Genes ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 565 ◽  
Author(s):  
Virtanen ◽  
Paunu ◽  
Ahlskog ◽  
Varnai ◽  
Sipeky ◽  
...  

Prostate cancer is globally the second most commonly diagnosed cancer type in men.Recent studies suggest that mutations in DNA repair genes are associated with aggressive forms ofprostate cancer and castration resistance. Prostate cancer with DNA repair defects may bevulnerable to therapeutic targeting by Poly(ADP‐ribose) polymerase (PARP) inhibitors. PARPenzymes modify target proteins with ADP‐ribose in a process called PARylation and are inparticular involved in single strand break repair. The rationale behind the clinical trials that led tothe current use of PARP inhibitors to treat cancer was to target the dependence of BRCA‐mutantcancer cells on the PARP‐associated repair pathway due to deficiency in homologousrecombination. However, recent studies have proposed therapeutic potential for PARP inhibitorsin tumors with a variety of vulnerabilities generating dependence on PARP beyond the syntheticlethal targeting of BRCA1/BRCA2 mutated tumors, suggesting a wider potential than initiallythought. Importantly, PARP‐associated DNA repair pathways are also closely connected toandrogen receptor (AR) signaling, which is a key regulator of tumor growth and a centraltherapeutic target in prostate cancer. In this review, we provide an extensive overview of publishedand ongoing trials exploring PARP inhibitors in treatment of prostate cancer and discuss theunderlying biology. Several clinical trials are currently studying PARP inhibitor mono‐andcombination therapies in the treatment of prostate cancer. Integration of drugs targeting DNArepair pathways in prostate cancer treatment modalities allows developing of more personalizedcare taking also into account the genetic makeup of individual tumors.


Sign in / Sign up

Export Citation Format

Share Document