scholarly journals Poly-IC Preconditioning Protects against Cerebral and Renal Ischemia-Reperfusion Injury

2011 ◽  
Vol 32 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Amy E B Packard ◽  
Jason C Hedges ◽  
Frances R Bahjat ◽  
Susan L Stevens ◽  
Michael J Conlin ◽  
...  

Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant inflammatory responses, poly-IC elicits only modest systemic inflammation. Results show that poly-IC is a new powerful prophylactic treatment that offers promise as a clinical therapeutic strategy to minimize damage in patient populations at risk of ischemic injury.

2021 ◽  
Author(s):  
Tingting Li ◽  
Qingsong Chen ◽  
Jiangwen Dai ◽  
Zuotian Huang ◽  
Yunhai Luo ◽  
...  

Abstract Hepatic ischemia reperfusion injury (IRI) is a major factor affecting the prognosis of liver transplantation through a series of severe cell death and inflammatory responses. MicroRNA-141-3p (miR-141-3p) has been reported to be associated with hepatic steatosis and other liver diseases. However, the potential role of miR-141-3p in hepatic IRI is currently unknown. In the present study, we found that miR-141-3p levels were negatively correlated with alanine aminotransferase (ALT)/aspartate aminotransferase (AST) in liver transplantation patients. The results demonstrated that miR-141-3p was decreased in mouse liver tissue after hepatic IRI in mice and in hepatocytes after hypoxia/reoxygenation (H/R). Overexpression of miR-141-3p directly decreased Kelch-like ECH-associated protein 1 (Keap1) levels and attenuated cell apoptosis in vivo and in vitro, while inhibition of miR-141-3p facilitated apoptosis. Further experiments revealed that overexpression of miR-141-3p also attenuated oxidative stress-induced damage in hepatocytes under H/R conditions. Taken together, our results indicate that miR-141-3p plays a major role in hepatic IRI through the Keap1 signaling pathway, and the present study suggests that miR-141-3p might have a protective effect on hepatic IRI to some extent.


2019 ◽  
Author(s):  
Yuxin Li ◽  
Rui Xu ◽  
Prahlad K. Rao ◽  
Charles K Gomes ◽  
E. Richard Moran ◽  
...  

AbstractActivation of bile acid (BA) receptor, farnesoid X receptor (FXR) has been shown to inhibit inflammatory responses and improve tissue ischemia-reperfusion injury (IRI). This study investigated the effect of FXR deficiency on liver IRI, using a liver warm IRI mouse model. We demonstrate that liver IRI resulted in decreased FXR expression in the liver of WT mice. FXR-/-mice displayed greater liver damage and inflammatory responses than WT mice, characterized by significant increases in liver weight, serum AST and ALT, hepatocyte apoptosis and liver inflammatory cytokines. Liver IRI increased expression of X box binding protein 1 (XBP1) and FGF21 in WT liver, but not in FXR-/- liver, which conversely increased CHOP expression, suggesting a loss of ER stress protection in the absence of FXR. FXR deficiency increased circulating total BAs and altered BA composition with reduced TUDCA and hepatic BA synthesis markers. FXR deficiency also reshaped gut microbiota composition with increased Bacteroidetes and Proteobacteria and decreased Firmicutes. Curiously, Bacteroidetes were positively and Firmicutes were negatively correlated with serum ALT levels. Administration of FXR agonist CDCA inhibited NF-κB activity and TNFα expression in vitro and improved liver IRI in vivo. Our findings demonstrate that FXR signaling plays an important role in the modulation of liver IRI.


2015 ◽  
Vol 212 (8) ◽  
pp. 1267-1281 ◽  
Author(s):  
Tadayuki Yago ◽  
Brian G. Petrich ◽  
Nan Zhang ◽  
Zhenghui Liu ◽  
Bojing Shao ◽  
...  

Neutrophil recruitment, mediated by β2 integrins, combats pyogenic infections but also plays a key role in ischemia–reperfusion injury and other inflammatory disorders. Talin induces allosteric rearrangements in integrins that increase affinity for ligands (activation). Talin also links integrins to actin and other proteins that enable formation of adhesions. Structural studies have identified a talin1 mutant (L325R) that perturbs activation without impairing talin’s capacity to link integrins to actin and other proteins. Here, we found that mice engineered to express only talin1(L325R) in myeloid cells were protected from renal ischemia–reperfusion injury. Dissection of neutrophil function in vitro and in vivo revealed that talin1(L325R) neutrophils had markedly impaired chemokine-induced, β2 integrin–mediated arrest, spreading, and migration. Surprisingly, talin1(L325R) neutrophils exhibited normal selectin-induced, β2 integrin–mediated slow rolling, in sharp contrast to the defective slow rolling of neutrophils lacking talin1 or expressing a talin1 mutant (W359A) that blocks talin interaction with integrins. These studies reveal the importance of talin-mediated activation of integrins for renal ischemia–reperfusion injury. They further show that neutrophil arrest requires talin recruitment to and activation of integrins. However, although neutrophil slow rolling requires talin recruitment to integrins, talin-mediated integrin activation is dispensable.


Life Sciences ◽  
2020 ◽  
Vol 256 ◽  
pp. 117860 ◽  
Author(s):  
Niharika Shiva ◽  
Nisha Sharma ◽  
Yogesh A. Kulkarni ◽  
Shrikant R. Mulay ◽  
Anil Bhanudas Gaikwad

Renal Failure ◽  
2018 ◽  
Vol 40 (1) ◽  
pp. 498-505 ◽  
Author(s):  
Xiao Wang ◽  
Wei Wang ◽  
Jian-Zhong Wang ◽  
Cheng Yang ◽  
Chao-Zhao Liang

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Ying Dong Du ◽  
Wen Yuan Guo ◽  
Cong Hui Han ◽  
Ying Wang ◽  
Xiao Song Chen ◽  
...  

AbstractDespite N6-methyladenosine (m6A) is functionally important in various biological processes, its role and the underlying regulatory mechanism in the liver remain largely unexplored. In the present study, we showed that fat mass and obesity-associated protein (FTO, an m6A demethylase) was involved in mitochondrial function during hepatic ischemia–reperfusion injury (HIRI). We found that the expression of m6A demethylase FTO was decreased during HIRI. In contrast, the level of m6A methylated RNA was enhanced. Adeno-associated virus-mediated liver-specific overexpression of FTO (AAV8-TBG-FTO) ameliorated the HIRI, repressed the elevated level of m6A methylated RNA, and alleviated liver oxidative stress and mitochondrial fragmentation in vivo and in vitro. Moreover, dynamin-related protein 1 (Drp1) was a downstream target of FTO in the progression of HIRI. FTO contributed to the hepatic protective effect via demethylating the mRNA of Drp1 and impairing the Drp1-mediated mitochondrial fragmentation. Collectively, our findings demonstrated the functional importance of FTO-dependent hepatic m6A methylation during HIRI and provided valuable insights into the therapeutic mechanisms of FTO.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Chong Huang ◽  
Yan Chen ◽  
Bin Lai ◽  
Yan-Xia Chen ◽  
Cheng-Yun Xu ◽  
...  

Abstract Background Acute kidney injury (AKI) is a major kidney disease with poor clinical outcome. SP1, a well-known transcription factor, plays a critical role in AKI and subsequent kidney repair through the regulation of various cell biologic processes. However, the underlying mechanism of SP1 in these pathological processes remain largely unknown. Methods An in vitro HK-2 cells with anoxia-reoxygenation injury model (In vitro simulated ischemic injury disease) and an in vivo rat renal ischemia-reperfusion injury model were used in this study. The expression levels of SP1, miR-205 and PTEN were detected by RT-qPCR, and the protein expression levels of SP1, p62, PTEN, AKT, p-AKT, LC3II, LC3I and Beclin-1 were assayed by western blot. Cell proliferation was assessed by MTT assay, and the cell apoptosis was detected by flow cytometry. The secretions of IL-6 and TNF-α were detected by ELISA. The targeted relationship between miR-205 and PTEN was confirmed by dual luciferase report assay. The expression and positioning of LC-3 were observed by immunofluorescence staining. TUNEL staining was used to detect cell apoptosis and immunohistochemical analysis was used to evaluate the expression of SP1 in renal tissue after ischemia-reperfusion injury in rats. Results The expression of PTEN was upregulated while SP1 and miR-205 were downregulated in renal ischemia-reperfusion injury. Overexpression of SP1 protected renal tubule cell against injury induced by ischemia-reperfusion via miR-205/PTEN/Akt pathway mediated autophagy. Overexpression of SP1 attenuated renal ischemia-reperfusion injury in rats. Conclusions SP1 overexpression restored autophagy to alleviate acute renal injury induced by ischemia-reperfusion through the miR-205/PTEN/Akt pathway.


2018 ◽  
Vol 102 ◽  
pp. S708
Author(s):  
Ivan Linares ◽  
Agata Bartczak ◽  
Kaveh Farrokhi ◽  
Dagmar Kollmann ◽  
Moritz Kaths ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document