scholarly journals Oxidized nucleotide insertion by pol β confounds ligation during base excision repair

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Melike Çağlayan ◽  
Julie K. Horton ◽  
Da-Peng Dai ◽  
Donna F. Stefanick ◽  
Samuel H. Wilson
2022 ◽  
Author(s):  
Qun Tang ◽  
Robert McKenna ◽  
Melike Caglayan

DNA ligase I (LIG1) catalyzes final ligation step following DNA polymerase (pol) β gap filling and an incorrect nucleotide insertion by polβ creates a nick repair intermediate with mismatched end at the downstream steps of base excision repair (BER) pathway. Yet, how LIG1 discriminates against the mutagenic 3'-mismatches at atomic resolution remains undefined. Here, we determined X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncovered the ligase strategies that favor or deter ligation of base substitution errors. Our structures revealed that LIG1 active site can accommodate G:T mismatch in a similar conformation with A:T base pairing, while it stays in the LIG1-adenylate intermediate during initial step of ligation reaction in the presence of A:C mismatch at 3'-strand. Moreover, we showed mutagenic ligation and aberrant nick sealing of the nick DNA substrates with 3'-preinserted dG:T and dA:C mismatches, respectively. Finally, we demonstrated that AP-Endonuclease 1 (APE1), as a compensatory proofreading enzyme, interacts and coordinates with LIG1 during mismatch removal and DNA ligation. Our overall findings and ligase/nick DNA structures provide the features of accurate versus mutagenic outcomes at the final BER steps where a multi-protein complex including polβ, LIG1, and APE1 can maintain accurate repair.


2022 ◽  
Author(s):  
Melike Caglayan ◽  
Qun Tang ◽  
Robert McKenna

Abstract DNA ligase I (LIG1) catalyzes final ligation step following DNA polymerase (pol) β gap filling and an incorrect nucleotide insertion by polβ creates a nick repair intermediate with mismatched end at the downstream steps of base excision repair (BER) pathway. Yet, how LIG1 discriminates against the mutagenic 3'-mismatches at atomic resolution remains undefined. Here, we determined X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncovered the ligase strategies that favor or deter ligation of base substitution errors. Our structures revealed that LIG1 active site can accommodate G:T mismatch in a similar conformation with A:T base pairing, while it stays in the LIG1-adenylate intermediate during initial step of ligation reaction in the presence of A:C mismatch at 3'-strand. Moreover, we showed mutagenic ligation and aberrant nick sealing of the nick DNA substrates with 3'-preinserted dG:T and dA:C mismatches, respectively. Finally, we demonstrated that AP-Endonuclease 1 (APE1), as a compensatory proofreading enzyme, interacts and coordinates with LIG1 during mismatch removal and DNA ligation. Our overall findings and ligase/nick DNA structures provide the features of accurate versus mutagenic outcomes at the final BER steps where a multi-protein complex including polβ, LIG1, and APE1 can maintain accurate repair.


2020 ◽  
Author(s):  
Pradnya Kamble ◽  
Kalen Hall ◽  
Mahesh Chandak ◽  
Qun Tang ◽  
Melike Çağlayan

ABSTRACTDNA ligase I (LIG1) completes base excision repair (BER) pathway at the last nick sealing step following DNA polymerase (pol) β gap filling DNA synthesis. We previously reported that pol β 8-oxo-2’-deoxyribonucleoside 5’-triphosphate (8-oxodGTP) insertion confounds LIG1 leading to the formation of ligation failure products with 5’-adenylate (AMP) block. Here, we report the mutagenic ligation of pol β 8-oxodGTP insertion products and an inefficient substrate-product channeling from pol β Watson-Crick like dG:T mismatch insertion to DNA ligation by LIG1 mutant with perturbed fidelity (E346A/E592A) in vitro. Moreover, our results revealed that the substrate discrimination of LIG1 for the nicked repair intermediates with preinserted 3’-8-oxodG or mismatches is governed by the mutations at both E346 and E592 residues. Finally, we found that Aprataxin (APTX) and Flap Endonuclease 1 (FEN1), as compensatory DNA-end processing enzymes, can remove 5’-AMP block from the abortive ligation products with 3’-8-oxodG or all possible 12 non-canonical base pairs. These findings contribute to understand the role of LIG1 as an important determinant of faithful BER, and how a multi-protein complex (LIG1, pol β, APTX and FEN1) can coordinate to hinder the formation of mutagenic repair intermediates with damaged or mismatched ends at the downstream steps of the BER pathway.


2002 ◽  
Vol 75 (5) ◽  
pp. 507 ◽  
Author(s):  
Katherine J. Kim ◽  
Indraneel Chakrabarty ◽  
Guang-Zhi Li ◽  
Sabine Grösch ◽  
Bernd Kaina ◽  
...  

Author(s):  
Richarda de Voer ◽  
Paul W Doetsch ◽  
Roland Kuiper ◽  
Barbara Rivera

2018 ◽  
Vol 482 (1) ◽  
pp. 96-100
Author(s):  
E. Belousova ◽  
◽  
M. Kutuzov ◽  
P. Ivankina ◽  
A. Ishchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document