scholarly journals Bioinformatic analysis of chromatin organization and biased expression of duplicated genes between two poplars with a common whole-genome duplication

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Le Zhang ◽  
Jingtian Zhao ◽  
Hao Bi ◽  
Xiangyu Yang ◽  
Zhiyang Zhang ◽  
...  

AbstractThe nonrandom three-dimensional organization of chromatin plays an important role in the regulation of gene expression. However, it remains unclear whether this organization is conserved and whether it is involved in regulating gene expression during speciation after whole-genome duplication (WGD) in plants. In this study, high-resolution interaction maps were generated using high-throughput chromatin conformation capture (Hi-C) techniques for two poplar species, Populus euphratica and Populus alba var. pyramidalis, which diverged ~14 Mya after a common WGD. We examined the similarities and differences in the hierarchical chromatin organization between the two species, including A/B compartment regions and topologically associating domains (TADs), as well as in their DNA methylation and gene expression patterns. We found that chromatin status was strongly associated with epigenetic modifications and gene transcriptional activity, yet the conservation of hierarchical chromatin organization across the two species was low. The divergence of gene expression between WGD-derived paralogs was associated with the strength of chromatin interactions, and colocalized paralogs exhibited strong similarities in epigenetic modifications and expression levels. Thus, the spatial localization of duplicated genes is highly correlated with biased expression during the diploidization process. This study provides new insights into the evolution of chromatin organization and transcriptional regulation during the speciation process of poplars after WGD.

2020 ◽  
Author(s):  
Alexander C. West ◽  
Marianne Iversen ◽  
Even H. Jørgensen ◽  
Simen R. Sandve ◽  
David G. Hazlerigg ◽  
...  

AbstractAcross taxa, circadian control of physiology and behavior arises from cell-autonomous oscillations in gene expression, governed by a networks of so-called ‘clock genes’, collectively forming transcription-translation feedback loops. In modern vertebrates, these networks contain multiple copies of clock gene family members, which arose through whole genome duplication (WGD) events during evolutionary history. It remains unclear to what extent multiple copies of clock gene family members are functionally redundant or have allowed for functional diversification. We addressed this problem through an analysis of clock gene expression in the Atlantic salmon, a representative of the salmonids, a group which has undergone at least 4 rounds of WGD since the base of the vertebrate lineage, giving an unusually large complement of clock genes. By comparing expression patterns across multiple tissues, and during development, we present evidence for gene- and tissue-specific divergence in expression patterns, consistent with functional diversification of clock gene duplicates. In contrast to mammals, we found no evidence for coupling between cortisol and circadian gene expression, but cortisol mediated non-circadian regulated expression of a subset of clock genes in the salmon gill was evident. This regulation is linked to changes in gill function necessary for the transition from fresh- to sea-water in anadromous fish. Overall, this analysis emphasises the potential for a richly diversified clock gene network to serve a mixture of circadian and non-circadian functions in vertebrate groups with complex genomes.Author SummaryThe generation of daily (circadian) rhythms in behaviour and physiology depends on the activities of networks of so-called clock genes. In vertebrates, these have become highly complex due to a process known as whole genome duplication, which has occurred repeatedly during evolutionary history, giving rise to additional copies of key elements of the clock gene network. It remains unclear whether this results in functional redundancy, or whether it has permitted new roles for clock genes to emerge. Here, based on studies in the Atlantic salmon, a species with an unusually large complement of clock genes, we present evidence in favour of the latter scenario. We observe marked tissue-specific, and developmentally-dependent differences in the expression patterns of duplicated copies of key clock genes, and we identify a subset of clock genes whose expression is associated with the physiological preparation to migrate to sea, but is independent of circadian regulation. Associated with this, cortisol secretion is uncoupled from circadian organisation, contrasting with the situation in mammals. Our results indicate that whole genome duplication has permitted clock genes to diversify into non-circadian functions, and raise interesting questions about the ubiquity of mammal-like coupling between circadian and endocrine function.


2013 ◽  
Vol 2013 ◽  
pp. 1-4
Author(s):  
Yanmei Yang ◽  
Jinpeng Wang ◽  
Jianyong Di

Soybean (Glycine max) is one of the most important crop plants for providing protein and oil. It is important to investigate soybean genome for its economic and scientific value. Polyploidy is a widespread and recursive phenomenon during plant evolution, and it could generate massive duplicated genes which is an important resource for genetic innovation. Improved sequence alignment criteria and statistical analysis are used to identify and characterize duplicated genes produced by polyploidization in soybean. Based on the collinearity method, duplicated genes by whole genome duplication account for 70.3% in soybean. From the statistical analysis of the molecular distances between duplicated genes, our study indicates that the whole genome duplication event occurred more than once in the genome evolution of soybean, which is often distributed near the ends of chromosomes.


2015 ◽  
Vol 112 (44) ◽  
pp. 13729-13734 ◽  
Author(s):  
Haifeng Wang ◽  
Getu Beyene ◽  
Jixian Zhai ◽  
Suhua Feng ◽  
Noah Fahlgren ◽  
...  

DNA methylation is important for the regulation of gene expression and the silencing of transposons in plants. Here we present genome-wide methylation patterns at single-base pair resolution for cassava (Manihot esculenta, cultivar TME 7), a crop with a substantial impact in the agriculture of subtropical and tropical regions. On average, DNA methylation levels were higher in all three DNA sequence contexts (CG, CHG, and CHH, where H equals A, T, or C) than those of the most well-studied model plant Arabidopsis thaliana. As in other plants, DNA methylation was found both on transposons and in the transcribed regions (bodies) of many genes. Consistent with these patterns, at least one cassava gene copy of all of the known components of Arabidopsis DNA methylation pathways was identified. Methylation of LTR transposons (GYPSY and COPIA) was found to be unusually high compared with other types of transposons, suggesting that the control of the activity of these two types of transposons may be especially important. Analysis of duplicated gene pairs resulting from whole-genome duplication showed that gene body DNA methylation and gene expression levels have coevolved over short evolutionary time scales, reinforcing the positive relationship between gene body methylation and high levels of gene expression. Duplicated genes with the most divergent gene body methylation and expression patterns were found to have distinct biological functions and may have been under natural or human selection for cassava traits.


2019 ◽  
Author(s):  
Reiko Akiyama ◽  
Jianqiang Sun ◽  
Masaomi Hatakeyama ◽  
Heidi E.L. Lischer ◽  
Roman V. Briskine ◽  
...  

AbstractPolyploidization, or whole genome duplication, is one of the major mechanisms of plant speciation. Allopolyploids (species that harbor polyploid genomes originating from hybridization of different diploid species) have been hypothesized to occupy a niche with intermediate, broader, or fluctuating environmental conditions compared with parental diploids. It remains unclear whether empirical data support this hypothesis and whether specialization of expression patterns of the homeologs (paralogous gene copies resulting from allopolyploidization) relates to habitat environments. Here, we studied the ecology and transcriptomics of a wild allopolyploid Cardamine flexuosa and its diploid parents C. hirsuta and C. amara at a fine geographical scale in their native area in Switzerland. We found that the diploid parents favored opposite extremes in terms of soil moisture, soil carbon-to-nitrogen ratios, and light availability. The habitat of the allopolyploid C. flexuosa was broader compared with those of its parental species and overlapped with those of the parents, but not at its extremes. In C. flexuosa, the genes related to water availability were overrepresented among those at both the expression level and the expression ratio of homeolog pairs, which varied among habitat environments. These findings provide empirical evidence for niche differentiation between an allopolyploid and its diploid parents at a fine scale, where both ecological and transcriptomic data indicated water availability to be the key environmental factor for niche differentiation.Significance statementPolyploidization, or whole genome duplication, is common in plants and may contribute to their ecological diversification. However, little is known about the niche differentiation of wild allopolyploids relative to their diploid parents and the gene expression patterns that may underlie such ecological divergence. We detected niche differentiation between the allopolyploid Cardamine flexuosa and its diploid parents C. amara and C. hirsuta along water availability gradient at a fine scale. The ecological differentiation was mirrored by the dynamic control of water availability-related gene expression patterns according to habitat environments. Thus, both ecological and transcriptomic data revealed niche differentiation between an allopolyploid species and its diploid parents.


2020 ◽  
Vol 18 (9) ◽  
pp. 1848-1850 ◽  
Author(s):  
Junpei Zhang ◽  
Wenting Zhang ◽  
Feiyang Ji ◽  
Jie Qiu ◽  
Xiaobo Song ◽  
...  

PLoS Genetics ◽  
2020 ◽  
Vol 16 (10) ◽  
pp. e1009097
Author(s):  
Alexander C. West ◽  
Marianne Iversen ◽  
Even H. Jørgensen ◽  
Simen R. Sandve ◽  
David G. Hazlerigg ◽  
...  

Author(s):  
Jeremy Pasquier ◽  
Ingo Braasch ◽  
Peter Batzel ◽  
Cedric Cabau ◽  
Jérome Montfort ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Ya Wang ◽  
Fei Chen ◽  
Yuanchun Ma ◽  
Taikui Zhang ◽  
Pengchuan Sun ◽  
...  

AbstractTea, coffee, and cocoa are the three most popular nonalcoholic beverages in the world and have extremely high economic and cultural value. The genomes of four tea plant varieties have recently been sequenced, but there is some debate regarding the characterization of a whole-genome duplication (WGD) event in tea plants. Whether the WGD in the tea plant is shared with other plants in order Ericales and how it contributed to tea plant evolution remained unanswered. Here we re-analyzed the tea plant genome and provided evidence that tea experienced only WGD event after the core-eudicot whole-genome triplication (WGT) event. This WGD was shared by the Polemonioids-Primuloids-Core Ericales (PPC) sections, encompassing at least 17 families in the order Ericales. In addition, our study identified eight pairs of duplicated genes in the catechins biosynthesis pathway, four pairs of duplicated genes in the theanine biosynthesis pathway, and one pair of genes in the caffeine biosynthesis pathway, which were expanded and retained following this WGD. Nearly all these gene pairs were expressed in tea plants, implying the contribution of the WGD. This study shows that in addition to the role of the recent tandem gene duplication in the accumulation of tea flavor-related genes, the WGD may have been another main factor driving the evolution of tea flavor.


Sign in / Sign up

Export Citation Format

Share Document