scholarly journals Effects of transcranial static magnetic stimulation over the primary motor cortex on local and network spontaneous electroencephalogram oscillations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sumiya Shibata ◽  
Tatsunori Watanabe ◽  
Yoshihiro Yukawa ◽  
Masatoshi Minakuchi ◽  
Ryota Shimomura ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) is a novel non-invasive brain stimulation technique that reduces cortical excitability at the stimulation site. We investigated the effects of tSMS over the left primary motor cortex (M1) for 20 min on the local electroencephalogram (EEG) power spectrum and interregional EEG coupling. Twelve right-handed healthy subjects participated in this crossover, double-blind, sham-controlled study. Resting-state EEG data were recorded for 3 min before the intervention and 17 min after the beginning of the intervention. The power spectrum at the left central electrode (C3) and the weighted phase lag index (wPLI) between C3 and the other electrodes was calculated for theta (4–8 Hz), alpha (8–12 Hz), and beta (12–30 Hz) frequencies. The tSMS significantly increased theta power at C3 and the functional coupling in the theta band between C3 and the parietal midline electrodes. The tSMS over the left M1 for 20 min exhibited modulatory effects on local cortical activity and interregional functional coupling in the theta band. The neural oscillations in the theta band may have an important role in the neurophysiological effects induced by tSMS over the frontal cortex.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasuyuki Takamatsu ◽  
Satoko Koganemaru ◽  
Tatsunori Watanabe ◽  
Sumiya Shibata ◽  
Yoshihiro Yukawa ◽  
...  

AbstractTranscranial static magnetic stimulation (tSMS) has been focused as a new non-invasive brain stimulation, which can suppress the human cortical excitability just below the magnet. However, the non-regional effects of tSMS via brain network have been rarely studied so far. We investigated whether tSMS over the left primary motor cortex (M1) can facilitate the right M1 in healthy subjects, based on the hypothesis that the functional suppression of M1 can cause the paradoxical functional facilitation of the contralateral M1 via the reduction of interhemispheric inhibition (IHI) between the bilateral M1. This study was double-blind crossover trial. We measured the corticospinal excitability in both M1 and IHI from the left to right M1 by recording motor evoked potentials from first dorsal interosseous muscles using single-pulse and paired-pulse transcranial magnetic stimulation before and after the tSMS intervention for 30 min. We found that the corticospinal excitability of the left M1 decreased, while that of the right M1 increased after tSMS. Moreover, the evaluation of IHI revealed the reduced inhibition from the left to the right M1. Our findings provide new insights on the mechanistic understanding of neuromodulatory effects of tSMS in human.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Andrea Guerra ◽  
Federica Assenza ◽  
Federica Bressi ◽  
Federica Scrascia ◽  
Marco Del Duca ◽  
...  

Although motor deficits affect patients with Alzheimer's disease (AD) only at later stages, recent studies demonstrated that primary motor cortex is precociously affected by neuronal degeneration. It is conceivable that neuronal loss is compensated by reorganization of the neural circuitries, thereby maintaining motor performances in daily living. Effectively several transcranial magnetic stimulation (TMS) studies have demonstrated that cortical excitability is enhanced in AD and primary motor cortex presents functional reorganization. Although the best hypothesis for the pathogenesis of AD remains the degeneration of cholinergic neurons in specific regions of the basal forebrain, the application of specific TMS protocols pointed out a role of other neurotransmitters. The present paper provides a perspective of the TMS techniques used to study neurophysiological aspects of AD showing also that, based on different patterns of cortical excitability, TMS may be useful in discriminating between physiological and pathological brain aging at least at the group level. Moreover repetitive TMS might become useful in the rehabilitation of AD patients. Finally integrated approaches utilizing TMS together with others neuro-physiological techniques, such as high-density EEG, and structural and functional imaging as well as biological markers are proposed as promising tool for large-scale, low-cost, and noninvasive evaluation of at-risk populations.


2016 ◽  
Vol 03 (01) ◽  
pp. 002-006
Author(s):  
Lara Schrader ◽  
Sima Sadeghinejad ◽  
Jalleh Sadeghinejad ◽  
Movses Kazanchyan ◽  
Lisa Koski ◽  
...  

Abstract Background/objectives Optimal low frequency repetitive transcranial magnetic stimulation (LF-rTMS) parameters for treating epilepsy and other brain disorders are unknown. To address this question, a systematic study of the effects of LF-rTMS frequency and intensity on cortical excitability was performed. Methods Using a four-period crossover design, subjects were scheduled for four LF-rTMS sessions that were at least four weeks apart. LF-rTMS was delivered as 900 pulses directed at primary motor cortex using four protocols: 0.5 Hz at 90% resting motor threshold (RMT), 0.5 Hz at 110% RMT, 1 Hz at 90% RMT, and 1 Hz at 110% RMT. Motor evoked potential (MEP) amplitude, resting motor threshold (RMT), and cortical silent period (CSP) were measured before, immediately after, and 60 min after LF-rTMS. Each of the four protocols was analyzed separately to compare baseline measurements to those after LF-rTMS. Results None of the four LF-rTMS protocols produced a trend or significant change in MEP amplitude, RMT, or CSP. Conclusion The lack of significant effect from the four LF-rTMS protocols indicates that none produced evidence for alteration of cortical excitability. The direct comparison of four LF-rTMS protocols is distinct to this investigation, as most similar studies were exploratory and studied only one or two protocols. The negative result relates only to the methods used in this investigation and does not indicate that LF-rTMS does not alter cortical excitability with other parameters. These results may be useful when designing additional investigations into the effect of LF-rTMS on epilepsy, other disorders, and cortical excitability.


Sign in / Sign up

Export Citation Format

Share Document