scholarly journals Plasma methionine metabolic profile is associated with longevity in mammals

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
N. Mota-Martorell ◽  
M. Jové ◽  
R. Berdún ◽  
R. Pamplona

AbstractMethionine metabolism arises as a key target to elucidate the molecular adaptations underlying animal longevity due to the negative association between longevity and methionine content. The present study follows a comparative approach to analyse plasma methionine metabolic profile using a LC-MS/MS platform from 11 mammalian species with a longevity ranging from 3.5 to 120 years. Our findings demonstrate the existence of a species-specific plasma profile for methionine metabolism associated with longevity characterised by: i) reduced methionine, cystathionine and choline; ii) increased non-polar amino acids; iii) reduced succinate and malate; and iv) increased carnitine. Our results support the existence of plasma longevity features that might respond to an optimised energetic metabolism and intracellular structures found in long-lived species.

2020 ◽  
Author(s):  
Uswa Shahzad ◽  
Michael S Taccone ◽  
Sachin A Kumar ◽  
Hidehiro Okura ◽  
Stacey Krumholtz ◽  
...  

Abstract For decades, cell biologists and cancer researchers have taken advantage of non-murine species to increase our understanding of the molecular processes that drive normal cell and tissue development, and when perturbed, cause cancer. The advent of whole genome sequencing has revealed the high genetic homology of these organisms to humans. Seminal studies in non-murine organisms such as D. melanogaster, C. elegans, and D. rerio identified many of the signaling pathways involved in cancer. Studies in these organisms offer distinct advantages over mammalian cell or murine systems. Compared to murine models, these three species have shorter lifespans, are less resource intense, and are amenable to high-throughput drug and RNA interference screening to test a myriad of promising drugs against novel targets. In this review, we introduce species specific breeding strategies, highlight the advantages of modeling brain tumours in each non-mammalian species, and underscore the successes attributed to scientific investigation using these models. We conclude with an optimistic proposal that discoveries in the fields of cancer research, and in particular neuro-oncology, may be expedited using these powerful screening tools and strategies.


Author(s):  
Harish C. Agrawal ◽  
Jimmie M. Davis ◽  
Williamina A. Himwich

2012 ◽  
Vol 25 (5) ◽  
pp. 697-708 ◽  
Author(s):  
Adriana Cabral ◽  
Stan Oome ◽  
Nick Sander ◽  
Isabell Küfner ◽  
Thorsten Nürnberger ◽  
...  

The genome of the downy mildew pathogen Hyaloperonospora arabidopsidis encodes necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLP). Although NLP are widely distributed in eukaryotic and prokaryotic plant pathogens, it was surprising to find these proteins in the obligate biotrophic oomycete H. arabidopsidis. Therefore, we analyzed the H. arabidopsidis NLP (HaNLP) family and identified 12 HaNLP genes and 15 pseudogenes. Most of the 27 genes form an H. arabidopsidis–specific cluster when compared with other oomycete NLP genes, suggesting this class of effectors has recently expanded in H. arabidopsidis. HaNLP transcripts were mainly detected during early infection stages. Agrobacterium tumefaciens–mediated transient expression and infiltration of recombinant NLP into tobacco and Arabidopsis leaves revealed that all HaNLP tested are noncytotoxic proteins. Even HaNLP3, which is most similar to necrosis-inducing NLP proteins of other oomycetes and which contains all amino acids that are critical for necrosis-inducing activity, did not induce necrosis. Chimeras constructed between HaNLP3 and the necrosis-inducing PsojNIP protein demonstrated that most of the HaNLP3 protein is functionally equivalent to PsojNIP, except for an exposed domain that prevents necrosis induction. The early expression and species-specific expansion of the HaNLP genes is suggestive of an alternative function of noncytolytic NLP proteins during biotrophic infection of plants.


2009 ◽  
Vol 419 (3) ◽  
pp. 661-668 ◽  
Author(s):  
Blandine Maître ◽  
Catherine Angénieux ◽  
Virginie Wurtz ◽  
Emilie Layre ◽  
Martine Gilleron ◽  
...  

CD1e displays unique features in comparison with other CD1 proteins. CD1e accumulates in Golgi compartments of immature dendritic cells and is transported directly to lysosomes, where it is cleaved into a soluble form. In these latter compartments, CD1e participates in the processing of glycolipid antigens. In the present study, we show that the N-terminal end of the membrane-associated molecule begins at amino acid 20, whereas the soluble molecule consists of amino acids 32–333. Thus immature CD1e includes an N-terminal propeptide which is cleaved in acidic compartments and so is absent from its mature endosomal form. Mutagenesis experiments demonstrated that the propeptide controls the assembly of the CD1e α-chain with β2-microglobulin, whereas propeptide-deleted CD1e molecules are immunologically active. Comparison of CD1e cDNAs from different mammalian species indicates that the CD1e propeptide is conserved during evolution, suggesting that it may also optimize the generation of CD1e molecules in other species.


2022 ◽  
Vol 23 (2) ◽  
pp. 618
Author(s):  
Kirill V. Khabudaev ◽  
Darya P. Petrova ◽  
Yekaterina D. Bedoshvili ◽  
Yelena V. Likhoshway ◽  
Mikhail A. Grachev

Microtubules are formed by α- and β-tubulin heterodimers nucleated with γ-tubulin. Tubulins are conserved eukaryotic proteins. Previously, it was shown that microtubules are involved in diatom silica frustule morphogenesis. Diatom frustules are varied, and their morphology is species-specific. Despite the attractiveness of the problem of elucidating the molecular mechanisms of genetically programmed morphogenesis, the structure and evolution of diatom tubulins have not been studied previously. Based on available genomic and transcriptome data, we analyzed the phylogeny of the predicted amino acid sequences of diatom α-, β- and γ-tubulins and identified five groups for α-tubulins, six for β-tubulins and four for γ-tubulins. We identified characteristic amino acids of each of these groups and also analyzed possible posttranslational modification sites of diatom tubulins. According to our results, we assumed what changes occurred in the diatom tubulin structures during their evolution. We also identified which tubulin groups are inherent in large diatom taxa. The similarity between the evolution of diatom tubulins and the evolution of diatoms suggests that molecular changes in α-, β- and γ-tubulins could be one of the factors in the formation of a high morphological diversity of diatoms.


Open Biology ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 140218 ◽  
Author(s):  
Luis Quintales ◽  
Ignacio Soriano ◽  
Enrique Vázquez ◽  
Mónica Segurado ◽  
Francisco Antequera

Nucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts. We show that mononucleosomal DNA follows a highly structured base composition pattern, which differs among species despite the high degree of histone conservation. These nucleosomal signatures are present in transcribed and non-transcribed regions across the genome. In the case of open reading frames, they correctly predict the relative distribution of codons on mononucleosomal DNA, and they also determine a periodicity in the average distribution of amino acids along the proteins. These results establish a direct and species-specific connection between the position of each codon around the histone octamer and protein composition.


Author(s):  
Kang Nian Yap ◽  
Yufeng Zhang

Erythrocyte enucleation is thought to have evolved in mammals to support their energetic cost of high metabolic activities. However, birds face similar selection pressure yet possess nucleated erythrocytes. Current hypotheses on the mammalian erythrocyte enucleation claim that the absence of cell organelles allows erythrocytes to 1) pack more hemoglobin into the cells to increase oxygen carrying capacity and 2) decrease erythrocyte size for increased surface area-to-volume ratio, and improved ability to traverse small capillaries. In this article, we first empirically tested current hypotheses using both conventional and phylogenetically informed analysis comparing literature values of mean cell hemoglobin concentration (MCHC) and mean cell volume (MCV) between 181 avian and 194 mammalian species. We found no difference in MCHC levels between birds and mammals using both conventional and phylogenetically corrected analysis. MCV was higher in birds than mammals according to conventional analysis, but the difference was lost when we controlled for phylogeny. These results suggested that avian and mammalian erythrocytes may employ different strategies to solve a common problem. To further investigate existing hypotheses or develop new hypothesis, we need to understand the functions of various organelles in avian erythrocytes. Consequently, we covered potential physiological functions of various cell organelles in avian erythrocytes based on current knowledge, while making explicit comparisons to their mammalian counterparts. Finally, we proposed by taking an integrative and comparative approach, using tools from molecular biology to evolutionary biology, would allow us to better understand the fundamental physiological functions of various components of avian and mammalian erythrocytes.


2020 ◽  
Vol 41 (Supplement_1) ◽  
Author(s):  
M Wakasa ◽  
Y Kawai ◽  
K Kajinami

Abstract Backgrounds Circulating levels of some amino acids are significantly decreased in heart failure patients. However, relationship between their levels and cardiac function remains unclear. We therefore examined association between amino acid levels and cardiac function as prognostic predictor in DCM patients. Methods Consecutive 59 patients with DCM (M/F: 46/13, mean age: 59 years) were enrolled. We measured 25 kinds of plasma AA concentration, derivative of reactive oxygen metabolites (d-ROMs) as marker of oxidative stress, and washout rate of Tc-99m Sestamibi (WOR) as function of mitochondria and LVEF as LV function parameters. The occurrence of rehospitalization for cardiac events or cardiac death were followed during mean 1101 days (13-2626). Results Histidine, arginine and Fischer ratio (FR) showed a significant positive association with LVEF (p < 0.05). Threonine and asparagine showed a significant negative association with WOR (P < 0.05). Histidine and arginine showed a significant negative association with levels of d-ROMs (p < 0.05).Rehospitalization for cardiac events and cardiac death were recorded in 16 patients (27%) and 6 patients (10%), respectively. Kaplan-Meier curves analysis showed similar trend of rehospitalization in subjects with lower FR and those with higher values. However, cardiac death in subjects with lower FR was observed more frequently as compared to those with higher values (22.2% vs 5.3% p < 0.05). ConclusionsThe plasma FR could be a novel prognostic biomarker in DCM patients.


2015 ◽  
Vol 84 (3) ◽  
pp. 217-235 ◽  
Author(s):  
Camille Meslin ◽  
Michel Laurin ◽  
Isabelle Callebaut ◽  
Xavier Druart ◽  
Philippe Monget

The seminal fluid is a complex substance composed of a variety of secreted proteins and has been shown to play an important role in the fertilisation process in mammals and also in Drosophila. Several genes under positive selection have been documented in some rodents and primates. Our study documents this phenomenon in several other mammalian taxa. We study the evolution of genes that encode for 20 proteins that are quantitatively predominant in the seminal fluid of at least one out of seven domestic animal species. We analyse the amino acid composition of these proteins for positive selection and for the presence of pseudogenes. Genes that disappeared through pseudogenisation include KLK2 in cattle, horse and mice. Traces of positive selection are found in seven genes. The identified amino acids are located in regions exposed to the protein surface, suggesting a role in the interaction of gametes, with possible impact on the process of speciation. Moreover, we found no evidence that the predominance of proteins in seminal fluid and their mode of evolution are correlated, and the uncoupled patterns of change suggest that this result is not due solely to lack of statistical power.


Sign in / Sign up

Export Citation Format

Share Document