Ni3[Fe(CN)6]2 nanocubes boost the catalytic activity of Pt for electrochemical hydrogen evolution

2018 ◽  
Vol 5 (7) ◽  
pp. 1683-1689 ◽  
Author(s):  
Xiao Zhang ◽  
Pei Liu ◽  
Yanfang Sun ◽  
Tianrong Zhan ◽  
Qingyun Liu ◽  
...  

Hybrid electrocatalyst of ultrafine Pt particles anchored on a Ni3[Fe(CN)6]2 nanocube with low Pt loading of 4.0% is designed for HERs, and superior catalytic activity is obtained in both acidic and alkaline media because the Ni species remarkably facilitates the reaction kinetics of water dissociation and thus improves HER activity.

2019 ◽  
Vol 7 (28) ◽  
pp. 16859-16866 ◽  
Author(s):  
Shan-Shan Lu ◽  
Li-Ming Zhang ◽  
Yi-Wen Dong ◽  
Jia-Qi Zhang ◽  
Xin-Tong Yan ◽  
...  

The design of electrocatalysts including precious and nonprecious metals for the hydrogen evolution reaction (HER) in alkaline media remains challenging due to the sluggish reaction kinetics caused by the additional water dissociation step.


2018 ◽  
Vol 54 (27) ◽  
pp. 3343-3346 ◽  
Author(s):  
Tingting Liu ◽  
Shuo Wang ◽  
Qiuju Zhang ◽  
Liang Chen ◽  
Weihua Hu ◽  
...  

A Pt-free catalyst of ultrasmall Ru2P nanoparticles on reduced graphene oxide nanosheets (Ru2P/RGO-20) shows remarkable HER catalytic activity under acidic and alkaline conditions, respectively, both superior to those of commercial Pt/C.


Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1451
Author(s):  
Changhong Chen ◽  
Ningkang Qian ◽  
Junjie Li ◽  
Xiao Li ◽  
Deren Yang ◽  
...  

Ru is a key component of electrocatalysts for hydrogen evolution reaction (HER), especially in alkaline media. However, the catalytic activity and durability of Ru-based HER electrocatalysts are still far from satisfactory. Here we report a solvothermal approach for the synthesis of PdCuRu porous nanoplates with different Ru compositions by using Pd nanoplates as the seeds. The PdCuRu porous nanoplates were formed through underpotential deposition (UPD) of Cu on Pd, followed by alloying Cu with Pd through interdiffusion and galvanic replacement between Cu atoms and Ru precursor simultaneously. When evaluated as HER electrocatalysts, the PdCuRu porous nanoplates exhibited excellent catalytic activity and durability. Of them, the Pd24Cu29Ru47/C achieved the lowest overpotential (40.7 mV) and smallest Tafel slope (37.5 mV dec−1) in an alkaline solution (much better than commercial Pt/C). In addition, the Pd24Cu29Ru47/C only lost 17% of its current density during a stability test for 10 h, while commercial Pt/C had a 59.5% drop under the same conditions. We believe that the electron coupling between three metals, unique porous structure, and strong capability of Ru for water dissociation are responsible for such an enhancement in HER performance.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ashwani Kumar ◽  
Viet Q. Bui ◽  
Jinsun Lee ◽  
Lingling Wang ◽  
Amol R. Jadhav ◽  
...  

AbstractSingle-atom-catalysts (SACs) afford a fascinating activity with respect to other nanomaterials for hydrogen evolution reaction (HER), yet the simplicity of single-atom center limits its further modification and utilization. Obtaining bimetallic single-atom-dimer (SAD) structures can reform the electronic structure of SACs with added atomic-level synergistic effect, further improving HER kinetics beyond SACs. However, the synthesis and identification of such SAD structure remains conceptually challenging. Herein, systematic first-principle screening reveals that the synergistic interaction at the NiCo-SAD atomic interface can upshift the d-band center, thereby, facilitate rapid water-dissociation and optimal proton adsorption, accelerating alkaline/acidic HER kinetics. Inspired by theoretical predictions, we develop a facile strategy to obtain NiCo-SAD on N-doped carbon (NiCo-SAD-NC) via in-situ trapping of metal ions followed by pyrolysis with precisely controlled N-moieties. X-ray absorption spectroscopy indicates the emergence of Ni-Co coordination at the atomic-level. The obtained NiCo-SAD-NC exhibits exceptional pH-universal HER-activity, demanding only 54.7 and 61 mV overpotentials at −10 mA cm−2 in acidic and alkaline media, respectively. This work provides a facile synthetic strategy for SAD catalysts and sheds light on the fundamentals of structure-activity relationships for future applications.


2020 ◽  
Vol 44 (43) ◽  
pp. 18601-18607 ◽  
Author(s):  
Mengyu Hou ◽  
Ying Xu ◽  
Xi Li ◽  
Yongzhi Dong ◽  
Fengke Sun ◽  
...  

CoP3@Cu/Cu exhibited excellent catalytic activity and stability in acidic and alkaline media.


RSC Advances ◽  
2016 ◽  
Vol 6 (9) ◽  
pp. 7370-7377 ◽  
Author(s):  
Yang Zhao ◽  
Shuo Wang ◽  
Chunyan Li ◽  
Xianbo Yu ◽  
Chunling Zhu ◽  
...  

MoP/N,P dual-doped carbon nanotube composite exhibited excellent activity and long-term stability toward HER both in acidic and alkaline media, superior to most of catalysts reported previously.


Sign in / Sign up

Export Citation Format

Share Document