ZnCl2 regulate flax-based porous carbon fiber for long cycle stability supercapacitors

2021 ◽  
Author(s):  
Gaigai Duan ◽  
Luying Zhao ◽  
Lian Chen ◽  
Feng Wang ◽  
Shuijian He ◽  
...  

The flax fiber with abundant sources and low cost is an excellent precursor of carbon fiber for supercapacitor. At present, it is very attractive designing high electrochemical performance electrode via...

2019 ◽  
Vol 12 (03) ◽  
pp. 1950042 ◽  
Author(s):  
Yunfeng Wang ◽  
Honghui Jiang ◽  
Shewen Ye ◽  
Jiaming Zhou ◽  
Jiahao Chen ◽  
...  

As the low-cost, natural multi-component for elemental doping and environment-friendly characteristics, biomass-derived porous carbon for energy storage attracts intense attention. Herein, walnut shells-based porous carbon has been obtained through carbonization, hydrothermal and activation treatment. The corresponding porous carbon owns superior electrochemical performances with specific capacitance reaching up to 462[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text], and shows excellent cycling stability (5000 cycles, [Formula: see text]94.2% of capacitance retention at 10[Formula: see text]A[Formula: see text]g[Formula: see text]). Moreover, the symmetry supercapacitor achieves high specific capacitance (197[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text]), relevant electrochemical cycling stability (5000 cycles, 89.2% of capacitance retention at 5[Formula: see text]A[Formula: see text]g[Formula: see text]) and high power/energy density (42.8[Formula: see text]W[Formula: see text]h[Formula: see text]kg[Formula: see text] at 1249[Formula: see text]W[Formula: see text]kg[Formula: see text]). Therefore, the facile synthesis approach and superb electrochemical performance ensure that the walnut shells-derived porous carbon is a promising electrode material candidate for supercapacitors.


RSC Advances ◽  
2017 ◽  
Vol 7 (54) ◽  
pp. 33843-33850 ◽  
Author(s):  
Peng Chang ◽  
Zhihong Qin

Herein, a novel kind of hierarchical porous carbons were directly synthesized from low-cost extracts of coal by coupling nano MgO template with in situ KOH activation strategy.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Shuang Xi ◽  
Ying Liu ◽  
Yinlong Zhu ◽  
Yutu Yang

Porous carbon nanowrinkles (PCW) coated on carbon micropost (CMP) arrays were successfully fabricated via three-step process, which took advantages of the large difference in elastic moduli between PCW and the raw material of CMP. The effect of nanowrinkle integration on the electrochemical performances was investigated, showing an improved electrochemical performance. The electrode also shows excellent cycling stability, which retains 84% of its initial discharge capacitance after 1700 cycles with >90% Coulombic efficiency. This enhanced electrochemical performance is ascribed to the synergistic effect of enlarged surface area and porous structure of PCW. The obtained PCW/CMP compositing electrode with the advantages of low cost and easy scaling-up has great potential for on-chip supercapacitors.


2019 ◽  
Vol 7 (34) ◽  
pp. 19709-19718 ◽  
Author(s):  
Dan Yang ◽  
Weihua Chen ◽  
Xixue Zhang ◽  
Liwei Mi ◽  
Chuntai Liu ◽  
...  

Sodium ion batteries attract extensive attention owning to their earth-abundant elements and potential of low cost. Low-cost FeS@C as anode was prepared from the practical perspective including the simple synthesis method and sufficient cycle stability (97.6%, 3000 cycles).


2016 ◽  
Vol 18 (6) ◽  
pp. 1506-1515 ◽  
Author(s):  
R. Berenguer ◽  
F. J. García-Mateos ◽  
R. Ruiz-Rosas ◽  
D. Cazorla-Amorós ◽  
E. Morallón ◽  
...  

Lignin valorization into binderless interconnected and porous carbon fiber electrodes, with excellent performance for supercapacitors, is demonstrated for low-cost, efficient and sustainable energy storage.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1072 ◽  
Author(s):  
Sicong Tan ◽  
Jiajia Li ◽  
Lijie Zhou ◽  
Peng Chen ◽  
Jiangtao Shi ◽  
...  

An easy approach to fabricating carbon fiber paper (CFP) based electrodes has been developed. This method can be mainly divided into two steps, for which the mixture of cellulose nanofibers (CNFs) and carbon nanotubes (CNTs) was first deposited on the surface of carbon fiber paper through a vacuum filtration device followed by immersing the hybrid paper into concentrated aniline solution to polymerize polyaniline (PANI). Compared to carbon fiber paper, the acid-treated carbon fiber paper (A-CFP)-based electrode provides more active sites, which are beneficial for the polymerization of polyaniline. The mixture of CNFs and CNTs could coat on the A-CFP by vacuum-filtration due to the high hydrophilicity of A-CFP improved by acid-treatment. PANI with different polymerization time was in-situ synthesized on the surface of the hybrid paper to form a three-dimensional cross-linked structure that greatly enhanced the electrochemical performance of the electrode by improving high capacitance, high rate-capability, and long cycle-life. Moreover, the assembled symmetrical supercapacitor showed a high area capacitance of 626 mF·cm−2 and an energy density of 87 µWh·cm−2. This facile, easy performed, and low-cost strategy may provide a feasible method for the production of supercapacitor electrodes.


RSC Advances ◽  
2016 ◽  
Vol 6 (15) ◽  
pp. 12525-12529 ◽  
Author(s):  
Qian Yang ◽  
Liubing Dong ◽  
Chengjun Xu ◽  
Feiyu Kang

Prepared graphene/MnO2/activated carbon fiber felt composite textile electrodes are low-cost and have high electrochemical performance in different neutral electrolytes.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1987 ◽  
Author(s):  
Dongya Sun ◽  
Liwen He ◽  
Yongle Lai ◽  
Jiqiong Lian ◽  
Jingjing Sun ◽  
...  

Biomorphic Mn3O4 nanocrystal/porous carbon microfiber composites were hydrothermally fabricated and subsequently calcined using cotton as a biotemplate. The as-prepared material exhibited a specific capacitance of 140.8 F·g−1 at 0.25 A·g−1 and an excellent cycle stability with a capacitance retention of 90.34% after 5000 cycles at 1 A·g−1. These characteristics were attributed to the introduction of carbon fiber, the high specific surface area, and the optimized microstructure inherited from the biomaterial.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051007
Author(s):  
Jie Dong ◽  
Qinghao Yang ◽  
Qiuli Zhao ◽  
Zhenzhong Hou ◽  
Yue Zhou ◽  
...  

Electrode materials with a high specific capacitance, outstanding reversibility and excellent cycle stability are constantly pursued for supercapacitors. In this paper, we present an approach to improve the electrochemical performance by combining the advantages of both inorganic and organic. Ni-MnO2/PANi-co-PPy composites are synthesized, with the copolymer of aniline/pyrrole being coated on the surface of Ni-doped manganese dioxide nanospheres. The inorganic–organic composite enables a substantial increase in its specific capacitance and cycle stability. When the mass ratio of Ni-MnO2 to aniline and pyrrole mixed monomer is 1:5, the composite delivers high specific capacitance of 445.49[Formula: see text]F/g at a scan rate of 2[Formula: see text]mV/s and excellent cycle stability of 61.65% retention after 5000 cycles. The results indicate that the Ni-MnO2/PANi-co-PPy composites are promising electrode materials for future supercapacitors application.


Sign in / Sign up

Export Citation Format

Share Document