scholarly journals The lithocholic acid 6β-hydroxylase cytochrome P-450, CYP 3A10, is an active catalyst of steroid-hormone 6β-hydroxylation

1993 ◽  
Vol 291 (2) ◽  
pp. 429-433 ◽  
Author(s):  
T K H Chang ◽  
J Teixeira ◽  
G Gil ◽  
D J Waxman

CYP 3A10 is a hamster liver cytochrome P-450 (P450) that encodes lithocholic acid 6 beta-hydroxylase, an enzyme that plays an important role in the detoxification of the cholestatic secondary bile acid lithocholate. Western-blot analysis revealed that the expression of CYP 3A10 protein is male-specific in hamster liver microsomes, a finding that is consistent with earlier analysis of CYP 3A10 mRNA. Since it has not been established whether the specificities of bile acid hydroxylase P450s, such as CYP 3A10, are restricted to their anionic bile acid substrates, we investigated the role of CYP 3A10 in the metabolism of a series of neutral steroid hormones using cDNA directed-expression in COS cells. The steroid hormones examined, testosterone, androstenedione and progesterone, were each metabolized by the expressed CYP 3A10, with 6 beta-hydroxylation corresponding to a major activity in all three instances. CYP 3A10-dependent steroid hydroxylation was increased substantially when the microsomes were prepared from COS cells co-transfected with NADPH:P450 reductase cDNA. In this case, the expressed P450 actively catalysed the 6 beta-hydroxylation of testosterone (288 +/- 23 pmol of product formed/min per mg of COS-cell microsomal protein), androstenedione (107 +/- 19 pmol/min per mg) and progesterone (150 +/- 7 pmol/min per mg). Other major CYP 3A10-mediated steroid hydroxylase activities included androstenedione 16 alpha-hydroxylation, progesterone 16 alpha- and 21-hydroxylation, and the formation of several unidentified products. CYP 3A10 exhibited similar Vmax. values for the 6 beta-hydroxylation of androstenedione and lithocholic acid (132 and 164 pmol/min per mg respectively), but metabolized the bile acid with a 3-fold lower Km (25 microM, as against 75 microM for androstenedione). Together, these studies establish that the substrate specificity of the bile acid hydroxylase CYP 3A10 is not restricted to bile acids, and further suggest that CYP 3A10 can play a physiologically important role in the metabolism of two classes of endogenous P450 substrates:steroid hormones and bile acids.

2020 ◽  
Vol 16 ◽  
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Bozica Kovacevic ◽  
Corina Mihaela Ionescu ◽  
Giuseppe Luna ◽  
...  

Aim: Examine bile acids effects in Type 2 diabetes. Background: In recent studies, the bile acid ursodeoxycholic acid (UDCA) has shown potent anti-inflammatory effects in obese patients while in type 2 diabetics (T2D) levels of the pro-inflammatory bile acid lithocholic acid were increased, and levels of the anti-inflammatory bile acid chenodeoxycholic acid were decreased, in plasma. Objective: Hence, this study aimed to examine applications of novel UDCA nanoparticles in diabetes. Methods: Diabetic balb/c adult mice were divided into three equal groups and gavaged daily with either empty microcapsules, free UDCA, or microencapsulated UDCA over two weeks. Their blood, tissues, urine, and faeces were collected for blood glucose, inflammation, and bile acid analyses. UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Results: UDCA resulted in modulatory effects on bile acids profile without antidiabetic effects suggesting that bile acid modulation was not directly linked to diabetes treatment. Conclusion: Bile acids modulated the bile profile without affecting blood glucose levels.


2021 ◽  
Author(s):  
Donggi Paik ◽  
Lina Yao ◽  
Yancong Zhang ◽  
Sena Bae ◽  
Gabriel D. D'Agostino ◽  
...  

The microbiota plays a pivotal role in gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17a (TH17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits TH17 cell differentiation. While it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown. Furthermore, it was not clear whether 3-oxoLCA and other immunomodulatory bile acids are associated with gut inflammatory pathologies in humans. Using a high-throughput screen, we identified human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Like 3-oxoLCA, isoLCA suppressed TH17 differentiation by inhibiting RORγt (retinoic acid receptor-related orphan nuclear receptor γt), a key TH17 cell-promoting transcription factor. Levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase (3α-HSDH) genes required for their biosynthesis were significantly reduced in patients with inflammatory bowel diseases (IBD). Moreover, levels of these bile acids were inversely correlated with expression of TH17 cell-associated genes. Overall, our data suggest that bacterially produced TH17 cell-inhibitory bile acids may reduce the risk of autoimmune and inflammatory disorders such as IBD.


2020 ◽  
Author(s):  
Kenya Honda ◽  
Yuko Sato ◽  
Koji Atarashi ◽  
Damian Plichta ◽  
Yasumichi Arai ◽  
...  

Abstract Centenarians, or individuals who have lived more than a century, represent the ultimate model of successful longevity associated with decreased susceptibility to ageing-associated illness and chronic inflammation. The gut microbiota is considered to be a critical determinant of human health and longevity. Here we show that centenarians (average 107 yo) have a distinct gut microbiome enriched in microbes capable of generating unique secondary bile acids, including iso-, 3-oxo-, and isoallo-lithocholic acid (LCA), as compared to elderly (85-89 yo) and young (21-55 yo) controls. Among these bile acids, the biosynthetic pathway for isoalloLCA had not been described previously. By screening 68 bacterial isolates from a centenarian’s faecal microbiota, we identified Parabacteroides merdae and Odoribacteraceae strains as effective producers of isoalloLCA. Furthermore, we generated and tested mutant strains of P. merdae to show that the enzymes 5α-reductase (5AR) and 3β-hydroxysteroid dehydrogenase (3βHSDH) were responsible for isoalloLCA production. This secondary bile acid derivative exerted the most potent antimicrobial effects among the tested bile acid compounds against gram-positive (but not gram-negative) multidrug-resistant pathogens, including Clostridioides difficile and vancomycin-resistant Enterococcus faecium. These findings suggest that specific bile acid metabolism may be involved in reducing the risk of pathobiont infection, thereby potentially contributing to longevity.


1991 ◽  
Vol 275 (1) ◽  
pp. 105-111 ◽  
Author(s):  
P Zimniak ◽  
E J Holsztynska ◽  
A Radominska ◽  
M Iscan ◽  
R Lester ◽  
...  

Cytochrome P-450-dependent 6 beta-hydroxylation of bile acids in rat liver contributes to the synthesis of the quantitatively important pool of 6-hydroxylated bile acids, as well as to the detoxification of hydrophobic bile acids. The lithocholic acid 6 beta-hydroxylation reaction was investigated and compared with androstenedione 6 beta-hydroxylation. Differential responses of these two activities to inducers and inhibitors of microsomal P-450 enzymes, lack of mutual inhibition by the two substrates and differential inhibition by antibodies raised against several purified hepatic cytochromes P-450 were observed. From these results it was concluded that 6 beta-hydroxylation of lithocholic acid is catalysed by P-450 form(s) different from the subfamily IIIA cytochromes P-450 which are responsible for the bulk of microsomal androstenedione 6 beta-hydroxylation. Similar, but more tentative, results revealed that the 7 alpha-hydroxylation of lithocholic acid and of androstenedione may be also catalysed by distinct P-450 enzymes. The results indicate that cytochromes P-450 hydroxylating bile acids are distinct from analogous enzymes that carry out reactions of the same regio- and stereo-specificity on neutral steroids (steroid hormones). A comparison of pairs of cytochromes P-450 that catalyse the same reaction on closely related steroid molecules will help to define those structural elements in the proteins that determine the recognition of their respective substrates.


2011 ◽  
Vol 436 (3) ◽  
pp. 621-629 ◽  
Author(s):  
Alex Odermatt ◽  
Thierry Da Cunha ◽  
Carlos A. Penno ◽  
Charlie Chandsawangbhuwana ◽  
Christian Reichert ◽  
...  

The oxidized bile acid 7-oxoLCA (7-oxolithocholic acid), formed primarily by gut micro-organisms, is reduced in human liver to CDCA (chenodeoxycholic acid) and, to a lesser extent, UDCA (ursodeoxycholic acid). The enzyme(s) responsible remained unknown. Using human liver microsomes, we observed enhanced 7-oxoLCA reduction in the presence of detergent. The reaction was dependent on NADPH and stimulated by glucose 6-phosphate, suggesting localization of the enzyme in the ER (endoplasmic reticulum) and dependence on NADPH-generating H6PDH (hexose-6-phosphate dehydrogenase). Using recombinant human 11β-HSD1 (11β-hydroxysteroid dehydrogenase 1), we demonstrate efficient conversion of 7-oxoLCA into CDCA and, to a lesser extent, UDCA. Unlike the reversible metabolism of glucocorticoids, 11β-HSD1 mediated solely 7-oxo reduction of 7-oxoLCA and its taurine and glycine conjugates. Furthermore, we investigated the interference of bile acids with 11β-HSD1-dependent interconversion of glucocorticoids. 7-OxoLCA and its conjugates preferentially inhibited cortisone reduction, and CDCA and its conjugates inhibited cortisol oxidation. Three-dimensional modelling provided an explanation for the binding mode and selectivity of the bile acids studied. The results reveal that 11β-HSD1 is responsible for 7-oxoLCA reduction in humans, providing a further link between hepatic glucocorticoid activation and bile acid metabolism. These findings also suggest the need for animal and clinical studies to explore whether inhibition of 11β-HSD1 to reduce cortisol levels would also lead to an accumulation of 7-oxoLCA, thereby potentially affecting bile acid-mediated functions.


Metabolites ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 29
Author(s):  
Peipei Li ◽  
Bryan A. Killinger ◽  
Elizabeth Ensink ◽  
Ian Beddows ◽  
Ali Yilmaz ◽  
...  

The gut microbiome can impact brain health and is altered in Parkinson’s disease (PD). The vermiform appendix is a lymphoid tissue in the cecum implicated in the storage and regulation of the gut microbiota. We sought to determine whether the appendix microbiome is altered in PD and to analyze the biological consequences of the microbial alterations. We investigated the changes in the functional microbiota in the appendix of PD patients relative to controls (n = 12 PD, 16 C) by metatranscriptomic analysis. We found microbial dysbiosis affecting lipid metabolism, including an upregulation of bacteria responsible for secondary bile acid synthesis. We then quantitatively measure changes in bile acid abundance in PD relative to the controls in the appendix (n = 15 PD, 12 C) and ileum (n = 20 PD, 20 C). Bile acid analysis in the PD appendix reveals an increase in hydrophobic and secondary bile acids, deoxycholic acid (DCA) and lithocholic acid (LCA). Further proteomic and transcriptomic analysis in the appendix and ileum corroborated these findings, highlighting changes in the PD gut that are consistent with a disruption in bile acid control, including alterations in mediators of cholesterol homeostasis and lipid metabolism. Microbially derived toxic bile acids are heightened in PD, which suggests biliary abnormalities may play a role in PD pathogenesis.


2017 ◽  
Vol 312 (1) ◽  
pp. H21-H32 ◽  
Author(s):  
Stefano Fiorucci ◽  
Angela Zampella ◽  
Giuseppe Cirino ◽  
Mariarosaria Bucci ◽  
Eleonora Distrutti

Bile acids are end products of cholesterol metabolism generated in the liver and released in the intestine. Primary and secondary bile acids are the result of the symbiotic relation between the host and intestinal microbiota. In addition to their role in nutrient absorption, bile acids are increasingly recognized as regulatory signals that exert their function beyond the intestine by activating a network of membrane and nuclear receptors. The best characterized of these bile acid-activated receptors, GPBAR1 (also known as TGR5) and the farnesosid-X-receptor (FXR), have also been detected in the vascular system and their activation mediates the vasodilatory effects of bile acids in the systemic and splanchnic circulation. GPBAR1, is a G protein-coupled receptor, that is preferentially activated by lithocholic acid (LCA) a secondary bile acid. GPBAR1 is expressed in endothelial cells and liver sinusoidal cells (LSECs) and responds to LCA by regulating the expression of both endothelial nitric oxide synthase (eNOS) and cystathionine-γ-lyase (CSE), an enzyme involved in generation of hydrogen sulfide (H2S). Activation of CSE by GPBAR1 ligands in LSECs is due to genomic and nongenomic effects, involves protein phosphorylation, and leads to release of H2S. Despite that species-specific effects have been described, vasodilation caused by GPBAR1 ligands in the liver microcirculation and aortic rings is abrogated by inhibition of CSE but not by eNOS inhibitor. Vasodilation caused by GPBAR1 (and FXR) ligands also involves large conductance calcium-activated potassium channels likely acting downstream to H2S. The identification of GPBAR1 as a vasodilatory receptor is of relevance in the treatment of complex disorders including metabolic syndrome-associated diseases, liver steatohepatitis, and portal hypertension.


2020 ◽  
Vol 16 (8) ◽  
pp. 900-909
Author(s):  
Armin Mooranian ◽  
Nassim Zamani ◽  
Ryu Takechi ◽  
Giuseppe Luna ◽  
Momir Mikov ◽  
...  

Background: Recent studies have suggested that hyperglycaemia influences the bile acid profile and concentrations of secondary bile acids in the gut. Introduction: This study aimed to measure changes in the bile acid profile in the gut, tissues, and faeces in type 1 Diabetes (T1D) and Type 2 Diabetes (T2D). Method: T1D and T2D were established in a mouse model. Twenty-one seven-weeks old balb/c mice were randomly divided into three equal groups, healthy, T1D and T2D. Blood, tissue, urine and faeces samples were collected for bile acid measurements. Results: Compared with healthy mice, T1D and T2D mice showed lower levels of the primary bile acid, chenodeoxycholic acid, in the plasma, intestine, and brain, and higher levels of the secondary bile acid, lithocholic acid, in the plasma and pancreas. Levels of the bile acid ursodeoxycholic acid were undetected in healthy mice but were found to be elevated in T1D and T2D mice. Conclusion: Bile acid profiles in other organs were variably influenced by T1D and T2D development, which suggests similarity in effects of T1D and T2D on the bile acid profile, but these effects were not always consistent among all organs, possibly since feedback mechanisms controlling enterohepatic recirculation and bile acid profiles and biotransformation are different in T1D and T2D.


Sign in / Sign up

Export Citation Format

Share Document