scholarly journals A novel method for on-chip debugging based on RISC-V processor

2022 ◽  
Vol 355 ◽  
pp. 03055
Author(s):  
Shan Gao ◽  
Dehua Wu ◽  
Wan’ang Xiao ◽  
Zetao Wang ◽  
Zhenghong Yang ◽  
...  

An on-chip debugging method based on the RISC-V processor is introduced, which simplifies the complicated debugging operation into instructions and improves the debugging efficiency effectively. The method adopts a JTAG interface to realize the debugging functions of the processor, such as running control, software breakpoint, hardware breakpoint and single-step execution. The method was verified by simulation at the RTL level, and the logic synthesis was carried out in SMIC 180nm process library.

2021 ◽  
Vol 11 (2) ◽  
pp. 22
Author(s):  
Umberto Ferlito ◽  
Alfio Dario Grasso ◽  
Michele Vaiana ◽  
Giuseppe Bruno

Charge-Based Capacitance Measurement (CBCM) technique is a simple but effective technique for measuring capacitance values down to the attofarad level. However, when adopted for fully on-chip implementation, this technique suffers output offset caused by mismatches and process variations. This paper introduces a novel method that compensates the offset of a fully integrated differential CBCM electronic front-end. After a detailed theoretical analysis of the differential CBCM topology, we present and discuss a modified architecture that compensates mismatches and increases robustness against mismatches and process variations. The proposed circuit has been simulated using a standard 130-nm technology and shows a sensitivity of 1.3 mV/aF and a 20× reduction of the standard deviation of the differential output voltage as compared to the traditional solution.


2007 ◽  
Vol 121-123 ◽  
pp. 611-614
Author(s):  
Che Hsin Lin ◽  
Jen Taie Shiea ◽  
Yen Lieng Lin

This paper proposes a novel method to on-chip fabricate a none-dead-volume microtip for ESI-MS applications. The microfluidic chip and ESI tip are fabricated in low-cost plastic based materials using a simple and rapid fabrication process. A constant-speed-pulling method is developed to fabricate the ESI tip by pulling mixed PMMA glue using a 30-μm stainless wire through the pre-formed microfluidic channel. The equilibrium of surface tension of PMMA glue will result in a sharp tip after curing. A highly uniform micro-tip can be formed directly at the outlet of the microfluidic channel with minimum dead-volume zone. Detection of caffeine, myoglobin, lysozyme and cytochrome C biosamples confirms the microchip device can be used for high resolution ESI-MS applications.


2021 ◽  
Vol 8 (3) ◽  
pp. 48-54
Author(s):  
Sreedhar Madichetty ◽  
Sukumar Mishra ◽  
Avram John Neroth

2019 ◽  
Vol 214 ◽  
pp. 01034
Author(s):  
Ralf Spiwoks ◽  
Aaron Armbruster ◽  
German Carrillo-Montoya ◽  
Magda Chelstowska ◽  
Patrick Czodrowski ◽  
...  

The Muon to Central Trigger Processor Interface (MUCTPI) of the ATLAS experiment at the Large Hadron Collider(LHC) at CERN is being upgraded for the next run of the LHC in order to use optical inputs and to provide full-precision information for muon candidates to the topological trigger processor (L1TOPO) of the Level-1 trigger system. The new MUCTPI is implemented as a single ATCA blade with high-end processing FPGAs which eliminate doublecounting of muon candidates in overlapping regions, send muon candidates to L1TOPO, and muon multiplicities tothe Central Trigger Processor (CTP), as well as readout data to the data acquisition system of the experiment. A Xilinx Zynq System-on-Chip (SoC) with a programmable logic part and a processor part is used for the communication to the processing FPGAs and the run control system. The processor part, based on ARM processor cores, is running embedded Linux prepared using the framework of the Linux Foundation's Yocto project. The ATLAS run control software was ported to the processor part and a run control application was developed which receives, at configuration, all data necessary for the overlap handling and candidate counting of the processing FPGAs. During running, the application provides ample monitoring of the physics data and of the operation of the hardware. *


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5207
Author(s):  
Minkyu Ju ◽  
Jeongeun Park ◽  
Young Hyun Cho ◽  
Youngkuk Kim ◽  
Donggun Lim ◽  
...  

Recently, selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In this study, we presented a novel technique for the SE formation by controlling the surface morphology of Si wafers. SEs were formed simultaneously, that is, in a single step for the doping process on different surface morphologies, nano/micro-surfaces, which were formed during the texturing processes; in the same doping process, the nano- and micro-structured areas showed different sheet resistances. In addition, the difference in sheet resistance between the heavily doped and shallow emitters could be controlled from almost 0 to 60 Ω/sq by changing the doping process conditions, pre-deposition and driving time, and temperature. Regarding cell fabrication, wafers simultaneously doped in the same tube were used. The sheet resistance of the homogeneously doped-on standard micro-pyramid surface was approximately 82 Ω/sq, and those of the selectively formed nano/micro-surfaces doped on were on 62 and 82 Ω/sq, respectively. As a result, regarding doped-on selectively formed nano/micro-surfaces, SE cells showed a JSC increase (0.44 mA/cm2) and a fill factor (FF) increase (0.6%) with respect to the homogeneously doped cells on the micro-pyramid surface, resulting in about 0.27% enhanced conversion efficiency.


Lab on a Chip ◽  
2016 ◽  
Vol 16 (18) ◽  
pp. 3485-3492 ◽  
Author(s):  
Xinghao Hu ◽  
Sandhya Rani Goudu ◽  
Sri Ramulu Torati ◽  
Byeonghwa Lim ◽  
Kunwoo Kim ◽  
...  

A novel method based on remotely controlled magnetic forces of bio-functionalized superparamagnetic colloids using micromagnet arrays was devised to measure frictional force at the sub-picoNewton (pN) scale for bio-nano-/micro-electromechanical system (bio-NEMS/MEMS) interfaces in liquid.


2014 ◽  
Vol 605 ◽  
pp. 95-98 ◽  
Author(s):  
Kazunari Ozasa ◽  
Jee Soo Lee ◽  
Simon Song ◽  
Masahiko Hara ◽  
Mizuo Maeda

On-chip cytotoxicity sensing for liquid substances was investigated by using the microbial chemotaxis of Euglena gracilis. The Euglena cells were confined in a closed-type micro-aquarium in a PDMS microchip, and the micro-aquarium was isolated from two microchannels to flow test and reference liquid substances. Small molecules of liquids permeated into PDMS and diffused into the water in the micro-aquarium, and thus, the chemical concentration gradient of test liquids was built in the micro-aquarium. The negative chemotactic movements of Euglena cells were observed for ethanol down to 0.5% within 2-5 min after the injection of diluted ethanol into one of the separated microchannels (counter reference = pure water). On the other hand, when 0.5% H2O2was introduced as a test liquid (counter reference = pure water), the Euglena cells fell into continuous rotation instead of single step turning and/or straight forward swimming. As a result, total swimming activity in the micro-aquarium decreased even after H2O2flow was switched back to water. The observation shows that the types of cytotoxic effects can be identified through the cell movement analysis.


Sign in / Sign up

Export Citation Format

Share Document