scholarly journals Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

AIP Advances ◽  
2018 ◽  
Vol 8 (5) ◽  
pp. 056721 ◽  
Author(s):  
Norman M. Wereley ◽  
Colette Perez ◽  
Young T. Choi
2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


Author(s):  
Guzide Satir Basaran ◽  
Yagut Akbarova ◽  
Kezban Korkmaz ◽  
Kursad Unluhizarci ◽  
Francois Cuzin ◽  
...  

2020 ◽  
Vol 35 (23-24) ◽  
pp. 3157-3169
Author(s):  
Qingyuan Xu ◽  
Shuguang Li ◽  
Runsheng Hu ◽  
Mengmeng Liu ◽  
Dong Wang ◽  
...  

Abstract


2003 ◽  
Vol 775 ◽  
Author(s):  
Byeongchan Lee ◽  
Kyeongjae Cho

AbstractWe investigate the surface kinetics of Pt using the extended embedded-atom method, an extension of the embedded-atom method with additional degrees of freedom to include the nonbulk data from lower-coordinated systems as well as the bulk properties. The surface energies of the clean Pt (111) and Pt (100) surfaces are found to be 0.13 eV and 0.147 eV respectively, in excellent agreement with experiment. The Pt on Pt (111) adatom diffusion barrier is found to be 0.38 eV and predicted to be strongly strain-dependent, indicating that, in the compressive domain, adatoms are unstable and the diffusion barrier is lower; the nucleation occurs in the tensile domain. In addition, the dissociation barrier from the dimer configuration is found to be 0.82 eV. Therefore, we expect that atoms, once coalesced, are unlikely to dissociate into single adatoms. This essentially tells that by changing the applied strain, we can control the patterning of nanostructures on the metal surface.


Author(s):  
Farid Triawan ◽  
Geraldy Cahya Denatra ◽  
Djati Wibowo Djamari

The study of a thin-walled column structure has gained much attention due to its potential in many engineering applications, such as the crash box of a car. A thin-walled square column usually exhibits high initial peak force, which may become very dangerous to the driver or passenger. To address this issue, introducing some shape patterns, e.g., origami folding pattern, to the column may become a solution. The present work investigates the compressive properties and behavior of a square box column structure which adopts the Miura origami folding pattern. Several test pieces of single-cell Miura origami column with varying folding angle and layer height are fabricated by a 3D printer. The filament is made of Polylactic Acid (PLA), which is a brittle material. Then, compression tests are carried out to understand its compressive mechanical properties and behavior. The results show that introducing a Miura origami pattern to form a thin-walled square column can dramatically lower down the initial peak stress by 96.82% and, at the same time, increase its ductility, which eventually improves the energy absorption capacity by 61.68% despite the brittle fracture behavior.


2021 ◽  
pp. 113288
Author(s):  
Kate Kennedy-Wood ◽  
Christi Anne S. Ng ◽  
Seham Alaiyed ◽  
Patricia L. Foley ◽  
Katherine Conant

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 426
Author(s):  
Kimberly Sánchez-Alonzo ◽  
Fabiola Silva-Mieres ◽  
Luciano Arellano-Arriagada ◽  
Cristian Parra-Sepúlveda ◽  
Humberto Bernasconi ◽  
...  

Helicobacter pylori, a Gram-negative bacterium, has as a natural niche the human gastric epithelium. This pathogen has been reported to enter into Candida yeast cells; however, factors triggering this endosymbiotic relationship remain unknown. The aim of this work was to evaluate in vitro if variations in nutrient concentration in the cultured medium trigger the internalization of H. pylori within Candida cells. We used H. pylori–Candida co-cultures in Brucella broth supplemented with 1%, 5% or 20% fetal bovine serum or in saline solution. Intra-yeast bacteria-like bodies (BLBs) were observed using optical microscopy, while intra-yeast BLBs were identified as H. pylori using FISH and PCR techniques. Intra-yeast H. pylori (BLBs) viability was confirmed using the LIVE/DEAD BacLight Bacterial Viability kit. Intra-yeast H. pylori was present in all combinations of bacteria–yeast strains co-cultured. However, the percentages of yeast cells harboring bacteria (Y-BLBs) varied according to nutrient concentrations and also were strain-dependent. In conclusion, reduced nutrients stresses H. pylori, promoting its entry into Candida cells. The starvation of both H. pylori and Candida strains reduced the percentages of Y-BLBs, suggesting that starving yeast cells may be less capable of harboring stressed H. pylori cells. Moreover, the endosymbiotic relationship between H. pylori and Candida is dependent on the strains co-cultured.


Sign in / Sign up

Export Citation Format

Share Document