Introduced social bees reduce nectar availability during the breeding season of the swift parrot (Lathamus discolor)

2017 ◽  
Vol 23 (1) ◽  
pp. 52
Author(s):  
Andrew B. Hingston ◽  
Simon Wotherspoon

Numerous pollinators are declining across the world. One of these, the swift parrot (Lathamus discolor) is a critically endangered Australian bird that feeds largely on the nectar and pollen of Eucalyptus trees. The Swift Parrot Recovery Plan includes competition for food from introduced social bees as a threatening process, although little evidence exists in support of this. Here, we present the strongest evidence yet to support this theory. We examined nectar standing crops in the species of trees that are important to swift parrots during their breeding season, Tasmanian blue gum (Eucalyptus globulus) and black gum (E. ovata). By comparing the amounts of nectar between flowers exposed to visitors and those bagged to exclude visitors throughout the day, we discovered that introduced honey bees (Apis mellifera) and bumble bees (Bombus terrestris) consumed most of the nectar and that exposed flowers often contained little nectar. Honey bees were the more common species, but bumble bees had greater per capita rates of nectar consumption. However, at low densities these bees had no effect on standing crops of nectar, and in such situations some nectar could be harvested by managed honey bees without reducing nectar availability for swift parrots. Although this study suggests that introduced social bees may pose a threat to swift parrots, further work is needed to determine whether our results are indicative of the impacts of bees across greater scales of time and space and whether these affect the reproductive success and conservation status of the swift parrot.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marcel Mertes ◽  
Julie Carcaud ◽  
Jean-Christophe Sandoz

AbstractSociality is classified as one of the major transitions in evolution, with the largest number of eusocial species found in the insect order Hymenoptera, including the Apini (honey bees) and the Bombini (bumble bees). Bumble bees and honey bees not only differ in their social organization and foraging strategies, but comparative analyses of their genomes demonstrated that bumble bees have a slightly less diverse family of olfactory receptors than honey bees, suggesting that their olfactory abilities have adapted to different social and/or ecological conditions. However, unfortunately, no precise comparison of olfactory coding has been performed so far between honey bees and bumble bees, and little is known about the rules underlying olfactory coding in the bumble bee brain. In this study, we used in vivo calcium imaging to study olfactory coding of a panel of floral odorants in the antennal lobe of the bumble bee Bombus terrestris. Our results show that odorants induce reproducible neuronal activity in the bumble bee antennal lobe. Each odorant evokes a different glomerular activity pattern revealing this molecule’s chemical structure, i.e. its carbon chain length and functional group. In addition, pairwise similarity among odor representations are conserved in bumble bees and honey bees. This study thus suggests that bumble bees, like honey bees, are equipped to respond to odorants according to their chemical features.


Apidologie ◽  
2017 ◽  
Vol 49 (2) ◽  
pp. 243-251
Author(s):  
Elisabeth Fung ◽  
Kelly Hill ◽  
Katja Hogendoorn ◽  
Andrew B. Hingston ◽  
Richard V. Glatz

mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Hao Zheng ◽  
Alex Nishida ◽  
Waldan K. Kwong ◽  
Hauke Koch ◽  
Philipp Engel ◽  
...  

ABSTRACT Social bees collect carbohydrate-rich food to support their colonies, and yet, certain carbohydrates present in their diet or produced through the breakdown of pollen are toxic to bees. The gut microbiota of social bees is dominated by a few core bacterial species, including the Gram-negative species Gilliamella apicola . We isolated 42 strains of G. apicola from guts of honey bees and bumble bees and sequenced their genomes. All of the G. apicola strains share high 16S rRNA gene similarity, but they vary extensively in gene repertoires related to carbohydrate metabolism. Predicted abilities to utilize different sugars were verified experimentally. Some strains can utilize mannose, arabinose, xylose, or rhamnose (monosaccharides that can cause toxicity in bees) as their sole carbon and energy source. All of the G. apicola strains possess a manO -associated mannose family phosphotransferase system; phylogenetic analyses suggest that this was acquired from Firmicutes through horizontal gene transfer. The metabolism of mannose is specifically dependent on the presence of mannose-6-phosphate isomerase (MPI). Neither growth rates nor the utilization of glucose and fructose are affected in the presence of mannose when the gene encoding MPI is absent from the genome, suggesting that mannose is not taken up by G. apicola strains which harbor the phosphotransferase system but do not encode the MPI. Given their ability to simultaneously utilize glucose, fructose, and mannose, as well as the ability of many strains to break down other potentially toxic carbohydrates, G. apicola bacteria may have key roles in improving dietary tolerances and maintaining the health of their bee hosts. IMPORTANCE Bees are important pollinators of agricultural plants. Our study documents the ability of Gilliamella apicola , a dominant gut bacterium in honey bees and bumble bees, to utilize several sugars that are harmful to bee hosts. Using genome sequencing and growth assays, we found that the ability to metabolize certain toxic carbohydrates is directly correlated with the presence of their respective degradation pathways, indicating that metabolic potential can be accurately predicted from genomic data in these gut symbionts. Strains vary considerably in their range of utilizable carbohydrates, which likely reflects historical horizontal gene transfer and gene deletion events. Unlike their bee hosts, G. apicola bacteria are not detrimentally affected by growth on mannose-containing medium, even in strains that cannot metabolize this sugar. These results suggest that G. apicola may be an important player in modulating nutrition in the bee gut, with ultimate effects on host health.


2017 ◽  
Vol 70 ◽  
pp. 52-57 ◽  
Author(s):  
B.G. Howlett ◽  
S.F.J. Read ◽  
L.K. Jesson ◽  
A. Benoist ◽  
L.E. Evans ◽  
...  

Different pollinators may vary in their temporal flower-visitation patterns within crops, potentially extending the period pollination may occur. To assess whether this could be the case in kiwifruit, we conducted standardised observational surveys of insects visiting kiwifruit flowers within 31 orchards at three times: 10:00—11:00, 12:00—13:00 and 14:00—15:00 hr. Honey bees (Apis mellifera) represented 92% of visitations (n=5474), but temporal abundances were uneven (predicted abundances were lower at 14:00—15:00 hr). Predatory hover flies (Melangyna, Melonostoma, Allograpta spp.) also showed an uneven temporal pattern. There were no significant differences in the temporal abundances for buff-tailed bumble bees (Bombus terrestris), rat- tailed hover flies (Eristalis, Helophilus spp.), March flies (Dilophis nigrostigma), flower longhorn beetles (Zorion guttigerum) or the native bees (Leioproctus and Lasioglossum spp.) although, in some cases, low numbers may have masked potential unevenness trends. Variation in diurnal flower-visitation patterns among insects suggests the potential for complementarity between different pollinators.


2020 ◽  
Vol 49 (6) ◽  
pp. 1393-1401
Author(s):  
Mario S Pinilla-Gallego ◽  
Emma E Williams ◽  
Abby Davis ◽  
Jacquelyn L Fitzgerald ◽  
Scott H McArt ◽  
...  

Abstract Parasites are commonly cited as one of the causes of population declines for both managed and wild bees. Epidemiological models sometimes assume that increasing the proportion of infected individuals in a group should increase transmission. However, social insects exhibit behaviors and traits which can dampen the link between parasite pressure and disease spread. Understanding patterns of parasite transmission within colonies of social bees has important implications for how to control diseases within those colonies, and potentially the broader pollinator community. We used bumble bees (Bombus impatiens Cresson) (Hymenoptera: Apidae) and western honey bees (Apis mellifera L.) (Hymenoptera: Apidae) infected with the gut parasites Crithidia bombi (Lipa & Triggiani) (Trypanosomatida: Trypanosomatidae) and Nosema ceranae (Fries et al.) (Dissociodihaplophasida: Nosematidae), respectively, to understand how the initial proportion of infected individuals impacts within-colony spread and intensity of infection of the parasites. In bumble bees, we found that higher initial parasite prevalence increased both the final prevalence and intensity of infection of C. bombi. In honey bees, higher initial prevalence increased the intensity of infection in individual bees, but not the final prevalence of N. ceranae. Measures that reduce the probability of workers bringing parasites back to the nest may have implications for how to control transmission and/or severity of infection and disease outbreaks, which could also have important consequences for controlling disease spread back into the broader bee community.


2017 ◽  
Vol 19 ◽  
pp. 26-35 ◽  
Author(s):  
A. Sáez ◽  
C.L. Morales ◽  
L.A. Garibaldi ◽  
M.A. Aizen

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Olesya N. Gusachenko ◽  
Luke Woodford ◽  
Katharin Balbirnie-Cumming ◽  
Eugene V. Ryabov ◽  
David J. Evans

Abstract Deformed wing virus (DWV) is a persistent pathogen of European honey bees and the major contributor to overwintering colony losses. The prevalence of DWV in honey bees has led to significant concerns about spillover of the virus to other pollinating species. Bumble bees are both a major group of wild and commercially-reared pollinators. Several studies have reported pathogen spillover of DWV from honey bees to bumble bees, but evidence of a sustained viral infection characterized by virus replication and accumulation has yet to be demonstrated. Here we investigate the infectivity and transmission of DWV in bumble bees using the buff-tailed bumble bee Bombus terrestris as a model. We apply a reverse genetics approach combined with controlled laboratory conditions to detect and monitor DWV infection. A novel reverse genetics system for three representative DWV variants, including the two master variants of DWV—type A and B—was used. Our results directly confirm DWV replication in bumble bees but also demonstrate striking resistance to infection by certain transmission routes. Bumble bees may support DWV replication but it is not clear how infection could occur under natural environmental conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ivan Meeus ◽  
Laurian Parmentier ◽  
Matti Pisman ◽  
Dirk C. de Graaf ◽  
Guy Smagghe

AbstractWild bees are in decline on a local to global scale. The presence of managed honey bees can lead to competition for resources with wild bee species, which has not been investigated so far for human-modified landscapes. In this study we assess if managed honey bee hive density influence nest development (biomass) of bumble bees, an important trait affecting fitness. We hypothesize that domesticated honey bees can negatively affect Bombus terrestris nest development in human-modified landscapes. In Flanders, Belgium, where such landscapes are dominantly present, we selected 11 locations with landscape metrics ranging from urban to agricultural. The bee hive locations were mapped and each location contained one apiary dense (AD) and one apiary sparse (AS) study site (mean density of 7.6 ± 5.7 managed honey bee hives per km2 in AD sites). We assessed the effect of apiary density on the reproduction of reared B. terrestris nests. Reared B. terrestris nests had more biomass increase over 8 weeks in apiary sparse (AS) sites compared to nests located in apiary dense (AD) sites. This effect was mainly visible in urban locations, where nest in AS sites have 99.25 ± 60.99 g more biomass increase compared to nest in urban AD sites. Additionally, we found that managed bumble bee nests had higher biomass increase in urban locations. We conclude that the density of bee hives is a factor to consider in regard to interspecific competition between domesticated honey bees and bumble bees.


2018 ◽  
Author(s):  
KM Ellegaard ◽  
S Brochet ◽  
G Bonilla-Rosso ◽  
O Emery ◽  
N Glover ◽  
...  

AbstractBacteria that engage in longstanding associations with particular hosts are expected to evolve host-specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep-branching host-specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles for host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbor more carbohydrate-related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate-related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of genomic changes underlying host specialization.


Sign in / Sign up

Export Citation Format

Share Document