scholarly journals The Positions and Movements of the Sources of Solar Radio Bursts of Spectral Type II

1963 ◽  
Vol 16 (2) ◽  
pp. 240 ◽  
Author(s):  
AA Weiss

The east-west position coordinates of the sources of 22 type II radio bursts, measured in the range 40-70 Mc/s using a swept-frequency interferometer, are analysed and discussed, in conjunction with dynamic spectra obtained in the frequency range 15-210 Mc/s. Many bursts are multiple and consist of a number of separate bursts excited by disturbances ejected in different directions from the vicinity of an optical flare, which may be equally complex.

1959 ◽  
Vol 9 ◽  
pp. 210-213
Author(s):  
A. R. Thompson

The sweep-frequency equipment at the Harvard Radio Astronomy Station, Fort Davis, Texas, has now been running continuously since 1956 September, recording solar radio activity in the frequency range from 100 to 580 Mc/s. The following contribution describes preliminary investigations of the correlation of the radio data with solar corpuscular emissions. This work was initiated to examine the well-known suggestions that the origins of the type II and type III radio bursts are associated with the ejection of auroral particles and cosmic rays respectively.


1965 ◽  
Vol 18 (2) ◽  
pp. 143 ◽  
Author(s):  
The Late AA Weiss ◽  
RT Stewart

The properties of the metre-wave type V burst have been-observed by interferometry in the frequency range 40-70 Mc/s, and by dynamic spectroscopy in the frequency range 5-210 Mc/s. Our investigations cover positions, movements, and angular sizes of the sources, and the spectrum and polarization of the emission.


1961 ◽  
Vol 133 ◽  
pp. 243 ◽  
Author(s):  
C. W. Young ◽  
C. L. Spencer ◽  
G. E. Moreton ◽  
J. A. Roberts

1959 ◽  
Vol 9 ◽  
pp. 176-185 ◽  
Author(s):  
J. P. Wild ◽  
K. V. Sheridan ◽  
G. H. Trent

Observations of the spectrum of solar radio bursts at meter wavelengths have indicated the desirability of measuring positions on the sun's disk not only as a function of time but also as a function of frequency. With this objective in view, we are now using a swept-frequency interferometer to determine the east-west disk coordinate of the transient solar sources at time intervals of ½ second and freqency intervals of about 5 Mc/s within the frequency range 40 to 70 Mc/s. The accuracy to which the centroid of the source is located is about ±1 minute of arc. In its initial form [1], the interferometer contained two aerials separated by a distance of 1 km. As a result of preliminary tests, two major additions have been made: (1) a second interferometer of much smaller spacing (¼ km) has been added to resolve the usual ambiguities associated with two-aerial interferometry, and (2) an automatic system of lobe-switching and phase-calibration has been incorporated to facilitate the reduction of the complex data recorded.


2020 ◽  
Author(s):  
Eoin Carley

<p>Solar flares are often associated with high-intensity radio emission known as `solar radio bursts' (SRBs). SRBs are generally observed in dynamic spectra and have five major spectral classes, labelled type I to type V depending on their shape and extent in frequency and time. Due to their morphological complexity, a challenge in solar radio physics is the automatic detection and classification of such radio bursts. Classification of SRBs has become necessary in recent years due to large data rates (3 Gb/s) generated by advanced radio telescopes such as the Low Frequency Array (LOFAR). Here we test the ability of several supervised machine learning algorithms to automatically classify type II and type III solar radio bursts. We test the detection accuracy of support vector machines (SVM), random forest (RF), as well as an implementation of transfer learning of the Inception and YOLO convolutional neural networks (CNNs). The training data was assembled from type II and III bursts observed by the Radio Solar Telescope Network (RSTN) from 1996 to 2018, supplemented by type II and III radio burst simulations. The CNNs were the best performers, often exceeding >90% accuracy on the validation set, with YOLO having the ability to perform radio burst burst localisation in dynamic spectra. This shows that machine learning algorithms (in particular CNNs) are capable of SRB classification, and we conclude by discussing future plans for the implementation of a CNN in the LOFAR for Space Weather (LOFAR4SW) data-stream pipelines.</p>


1980 ◽  
Vol 91 ◽  
pp. 257-259
Author(s):  
H. S. Sawant ◽  
S. S. Degaonkar ◽  
S. K. Alurkar ◽  
R. V. Bhonsle

Twenty type II solar radio bursts were observed during the period 1968 to 1972 by a solar radio spectroscope (240-40 MHz) at Ahmadebad. Intensity variations in type II bursts as a function of frequency and time are sometimes observed in their dynamic spectra. This fine structure enables determination of the shock thickness of the order of a few hundred to a few thousand kilometers. In a few cases, an interaction between streams of fast electrons and propagating shocks is clearly evidenced by simultaneous observations of short duration narrow band structures in type III bursts and type II bursts.


1959 ◽  
Vol 12 (4) ◽  
pp. 327 ◽  
Author(s):  
JA Roberts

The characteristics of bursts of spectral type II are studied in a sample of 65 bursts. Approximately half the bursts show harmonic structure and about half are compound type III-type II events. Band splitting, the doubling of both the fundamental and second harmonic bands, is also relatively common. A rather less common feature is the appearance of herring-bone structure in which the slowly drifting band of the type II burst appears to be a source from which rapidly drifting elements diverge towards lower and higher frequencies.


2021 ◽  
Vol 922 (1) ◽  
pp. 82
Author(s):  
Gennady Chernov ◽  
Valery Fomichev

Abstract Type II solar radio bursts are among the most powerful events in the solar radio emission in the meter wavelength range. It is generally accepted that the agents generating type II radio bursts are magnetohydrodynamic shock waves. But the relationship between the shock waves and the other manifestations of the large-scale disturbances in the solar atmosphere (coronal mass ejections, Morton waves, EUW waves) remains unclear. To clarify a problem, it is important to determine the conditions of generation of type II radio bursts. Here, the model of the radio source is based on the generation of radio emission within the front of the collisionless shock wave where the Buneman instability of plasma waves is developed. In the frame of this model, the Alfvén magnetic Mach number must exceed the critical value, and there is a strict restriction on the perpendicularity of the front. The model allows us to obtain the information about the parameters of the shock waves and the parameters of the medium by the parameters of type II bursts. The estimates, obtained in this paper for several events with the band splitting of the fundamental and harmonic emission bands of the type II bursts, confirm the necessary conditions of the model. In this case the registration of type II radio bursts is an indication of the propagation of shock waves in the solar atmosphere, and the absence of type II radio bursts is not an indication of the absence of shock waves. Such a situation should be taken into account when investigating the relationship between type II radio bursts and other manifestations of solar activity.


1994 ◽  
Vol 144 ◽  
pp. 283-284
Author(s):  
G. Maris ◽  
E. Tifrea

The type II solar radio bursts produced by a shock wave passing through the solar corona are one of the most frequently studied solar activity phenomena. The scientific interest in this type of phenomenon is due to the fact that the presence of this radio event in a solar flare is an almost certain indicator of a future geophysical effect. The origin of the shock waves which produce these bursts is not at all simple; besides the shocks which are generated as a result of a strong energy release during the impulsive phase of a flare, there are also the shocks generated by a coronal mass ejection or the shocks which appear in the interplanetary space due to the supplementary acceleration of the solar particles.


Sign in / Sign up

Export Citation Format

Share Document