scholarly journals Massively parallel screening of synthetic microbial communities

2019 ◽  
Vol 116 (26) ◽  
pp. 12804-12809 ◽  
Author(s):  
Jared Kehe ◽  
Anthony Kulesa ◽  
Anthony Ortiz ◽  
Cheri M. Ackerman ◽  
Sri Gowtham Thakku ◽  
...  

Microbial communities have numerous potential applications in biotechnology, agriculture, and medicine. Nevertheless, the limited accuracy with which we can predict interspecies interactions and environmental dependencies hinders efforts to rationally engineer beneficial consortia. Empirical screening is a complementary approach wherein synthetic communities are combinatorially constructed and assayed in high throughput. However, assembling many combinations of microbes is logistically complex and difficult to achieve on a timescale commensurate with microbial growth. Here, we introduce the kChip, a droplets-based platform that performs rapid, massively parallel, bottom-up construction and screening of synthetic microbial communities. We first show that the kChip enables phenotypic characterization of microbes across environmental conditions. Next, in a screen of ∼100,000 multispecies communities comprising up to 19 soil isolates, we identified sets that promote the growth of the model plant symbiontHerbaspirillum frisingensein a manner robust to carbon source variation and the presence of additional species. Broadly, kChip screening can identify multispecies consortia possessing any optically assayable function, including facilitation of biocontrol agents, suppression of pathogens, degradation of recalcitrant substrates, and robustness of these functions to perturbation, with many applications across basic and applied microbial ecology.

2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. Derilus ◽  
A. Forestil ◽  
J. Fortuné ◽  
O. Polyanska ◽  
C. Louime ◽  
...  

Methanogens are restricted to a few genera of Archaea, however they have great importance in the carbon cycle, impacting climactic considerations, and also find a role in renewable energy in the form of biogas. Here, we examine the microbial contribution to the production of methane in a sargassum fed anaerobic saltwater bioreactor, which are poorly characterized compared to fresh water bioreactors, using a comprehensive functional metagenomics approach. Despite abundant production of methane, we detected a low proportion of Archaea in the system using 16S rRNA community profile analyses. We address the low representation using an additional 16S rRNA analysis of shotgun data and a consideration of CO2:CH4production. Using a novel network alignment and tree building approach, we measured similarity between the meta-metabolic capabilities of different anaerobic microbial communities. The saltwater bioreactor samples clustered together, validating the approach and providing a method of determining meta-metabolic similarity between microbial communities, with a range of potential applications. We also introduce a number of additional approaches for examining and interpreting meta-metabolic network topology. The low abundance of methanogens appears as a common property of such anaerobic systems and likely reflects the relatively poor energetics of methanogens, while examination of key enzymes confirms that hydrogen producing bacteria are the major fermentative guild. Our results indicate that the use of readily available seawater and marine macroalgae is a promising approach to the production of biogas as a source of renewable energy.


2009 ◽  
Vol 47 (01) ◽  
Author(s):  
K Hochrath ◽  
S Hillebrandt ◽  
F Lammert ◽  
B Rathkolb ◽  
H Fuchs ◽  
...  

2018 ◽  
Vol 18 (4) ◽  
pp. 246-251 ◽  
Author(s):  
Inmaculada Perez-Sanchez ◽  
Maria Sabater-Molina ◽  
Maria Elisa Nicolas Rocamora ◽  
Guillermo Glover ◽  
Fuensanta Escudero ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document