In ovo injection of ascorbic acid and higher incubation temperature modulate blood parameters in response to heat exposure in broilers

2019 ◽  
Vol 60 (3) ◽  
pp. 279-287 ◽  
Author(s):  
S. Sgavioli ◽  
V. R. De Almeida ◽  
J. B. Matos Júnior ◽  
G. L. Zanirato ◽  
L. L. Borges ◽  
...  
2020 ◽  
Vol 42 ◽  
pp. e46029
Author(s):  
Meisam Shokraneh ◽  
Ali Asghar Sadeghi ◽  
Seyed Naser Mousavi ◽  
Saeid Esmaeilkhanian ◽  
Mohammad Chamani

This experiment was conducted to evaluate the effects of in ovo injection of nano-selenium (Nano-Se) and nano-zinc oxide (Nano-ZnO) and high eggshell temperature (EST) during late incubation on blood parameters of broiler hatchlings. A total of 750 fertile eggs, were weighed and randomly distributed among 5 treatment groups on each of 5 replicate tray levels. The injection was performed on 17 d of incubation. Treatments included of: 1) Eggs not injected and incubated at normal EST (control); 2) Eggs not injected and incubated at high EST; 3) Eggs injected NaCl solution and incubated at high EST (sham); 4) Eggs injected NaCl solution containing 40 µg Nano-Se and incubated at high EST; 5) Eggs injected NaCl solution containing 500 µg Nano-ZnO and incubated at high EST. EST of 37.8ºC (normal) or 38.9ºC (high) was applied from d 19 to 21 of incubation. In ovo injection of Nano-Se and Nano-ZnO significantly increased activity of GSH-Px and SOD and total protein, but decreased the levels of corticosterone, cortisol, T4 and T3 at high EST. Injection of Nano-Se and Nano-ZnO had a significant role in alleviating the negative effects of high temperature incubation and heat stress by increased antioxidant activity and reduced oxidative stress.


2018 ◽  
Vol 17 (1) ◽  
pp. 23
Author(s):  
Milad Farhadi Niaki ◽  
Mohammad Chamani ◽  
Farhad Forudi ◽  
Ali Nikkhah ◽  
Ali Asghar Sadeghi

2018 ◽  
Vol 9 (20) ◽  
pp. 43-52
Author(s):  
Marziyeh Ebrahimi ◽  
Gholamali Moghaddam ◽  
Hossein Janmohammadi Hossein Janmohammadi ◽  
Masoud Adibmoradi ◽  
Farideh Abdolalizadeh Alvanegh ◽  
...  

2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


2021 ◽  
pp. 1-7
Author(s):  
Hussin H. El-Fakhrany ◽  
Zenat A. Ibrahim ◽  
Elwy A. Ashour ◽  
Ali Osman ◽  
Mahmoud Alagawany

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1364
Author(s):  
Chris Major Ncho ◽  
Akshat Goel ◽  
Chae-Mi Jeong ◽  
Mohamed Youssouf ◽  
Yang-Ho Choi

The aim of this study was to explore the outcomes of an in ovo GABA injection in broilers challenged with HS. In Experiment 1, 210 Arbor Acres eggs were allocated to five treatments: no-injection, and in ovo injection of 0.6 mL of 0%, 5%, 10%, or 20% of GABA. Hatchling weight and CWEWR were significantly increased in the 5% GABA group. In ovo, injection of 10% GABA solution caused a significant decrease in plasma cholesterol and increased plasma total antioxidant capacity of hatchlings. Experiment 2 was conducted with 126 fertile Arbor Acres eggs distributed into one of two groups. At 17.5 days of incubation, one received no injection, and the other was fed 0.6 mL of 10% GABA. On day 10, one subgroup (4 replicates * 3 birds) from each treatment was submitted to HS (38 ± 1 °C for 3 h) while the other was kept at a thermoneutral temperature (29 ± 1 °C). An in ovo injection of GABA significantly increased total antioxidant capacity, but reduced malondialdehyde levels, hepatic mRNA levels of HSP70, FAS, and L-FABP with HS. In conclusion, an in ovo GABA injection improves CWEWR and antioxidant status at hatch, and enhances antioxidant status while downregulating the expression of HSP70 and fatty acid metabolism-related genes in young chicks under HS.


Sign in / Sign up

Export Citation Format

Share Document