Method to evaluate residual stresses in the laser cutting process

2002 ◽  
Vol 12 (1) ◽  
pp. 27-41 ◽  
Author(s):  
Y. Zamachtchikov ◽  
F. Breaban ◽  
P. Vantomme ◽  
A. Deffontaine
2021 ◽  
Author(s):  
Asma Manai

Welding is a joining process that leads to considerable change in the local material and the formation of welding residual stresses (RS). Welding residual stresses can be compressive (beneficial for the fatigue life) or tensile (harmful for the fatigue life). In this chapter, a probabilistic analysis of residual stresses distribution posterior to welding processes is carried out. Several researchers stated that the type of the introduced stresses either compressive or tensile depends on several factors. Some of these factors are listed in this chapter. Welding of mega-structures is carried out in the workshops, then a cutting process takes place to construct the exact size of the structural components. This cutting process has a significant effect on the weld residual stresses re-distribution. A study of the re-distribution of the weld residual stress after cutting was performed. It was found that independent of the weld seam length, the residual stresses re-distributed up to 60 % of the weld seam length.


Applied laser ◽  
2011 ◽  
Vol 31 (3) ◽  
pp. 248-250
Author(s):  
李淑玉 Li Shuyu ◽  
田新国 Tian Xinguo ◽  
贺敬地 He Jingdi ◽  
刘超 Liu Chao

2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Hitoshi Ozaki ◽  
Yosuke Koike ◽  
Hiroshi Kawakami ◽  
Jippei Suzuki

Recently, laser cutting is used in many industries. Generally, in laser cutting of metallic materials, suitable assist gas and its nozzle are needed to remove the molten metal. However, because of the gas nozzle should be set closer to the surface of a workpiece, existence of the nozzle seems to prevent laser cutting from being used flexible. Therefore, the new cutting process, Assist Gas Free laser cutting or AGF laser cutting, has been developed. In this process, the pressure at the bottom side of a workpiece is reduced by a vacuum pump, and the molten metal can be removed by the air flow caused by the pressure difference between both sides of the specimen. In this study, cutting properties of austenitic stainless steel by using AGF laser cutting with 2 kW CO2 laser were investigated. Laser power and cutting speed were varied in order to study the effect of these parameters on cutting properties. As a result, austenitic stainless steel could be cut with dross-free by AGF laser cutting. When laser power was 2.0 kW, cutting speed could be increased up to 100 mm/s, and kerf width at specimen surface was 0.28 mm.


2012 ◽  
Vol 44 (4) ◽  
pp. 1068-1082 ◽  
Author(s):  
H.A. Eltawahni ◽  
M. Hagino ◽  
K.Y. Benyounis ◽  
T. Inoue ◽  
A.G. Olabi

Sign in / Sign up

Export Citation Format

Share Document