Failure mode of monopile foundation for offshore wind turbine in soft clay under complex loads

Author(s):  
Song Dai ◽  
Bo Han ◽  
Guoxiang Huang ◽  
Xiaoqiang Gu ◽  
Liu Jian ◽  
...  
Author(s):  
Z. Lin ◽  
D. Cevasco ◽  
M. Collu

Currently, around 1500 offshore wind turbines are operating in the UK, for a total of 5.4GW, with further 3GW under construction, and 13GW consented. Until now, the focus of the research on offshore wind turbines has been mainly on how to minimise the CAPEX, but Operation and maintenance (O&M) can represent up to 39% of the lifetime costs of an offshore wind farm, due mainly to the high cost of the assets and the harsh environment, limiting the access to these assets in a safe mode. The present work is a part of a larger project, called HOME Offshore (www.homeoffshore.org), and it has as aim an advanced interpretation of the fault mechanisms through a holistic multiphysics modelling of the wind farm. The first step (presented here) toward achieving this aim consists of two main tasks: first of all, to identify and rank the most relevant failure modes within a wind farm, identifying the component, its mode of failure, and the relative environmental conditions. Then, to assess (for each failure mode) how the full-order, nonlinear model of dynamics used to represent the dynamics of the wind turbine can be reduced in order, such that is less computationally expensive (and therefore more suitable to be scaled up to represent multiple wind turbines), but still able to capture and represent the relevant dynamics linked with the inception of the chosen failure mode. A methodology to rank the failure modes is presented, followed by an approach to reduce the order of the Aero-Hydro-Servo-Elastic (AHSE) model of dynamics adopted. The results of the proposed reduced-order models are discussed, comparing it against the full-order coupled model, and taking as case study a fixed offshore wind turbine (monopile) in gearbox failure condition.


Author(s):  
F. Dinmohammadi ◽  
M. Shafiee

Failure Mode and Effects Analysis (FMEA) has been extensively used by wind turbine assembly manufacturers for risk and reliability analysis. However, several limitations are associated with its implementation in offshore wind farms: (i) the failure data gathered from SCADA system is often missing or unreliable, and hence, the assessment information of the three risk factors (i.e., severity, occurrence, and fault detection) are mainly based on experts’ knowledge; (ii) it is rather difficult for experts to precisely evaluate the risk factors; (iii) the relative importance among the risk factors is not taken into consideration, and hence, the results may not necessarily represent the true risk priorities; and etc. To overcome these drawbacks and improve the effectiveness of the traditional FMEA, we develop a fuzzy-FMEA approach for risk and failure mode analysis in offshore wind turbine systems. The information obtained from the experts is expressed using fuzzy linguistics terms, and a grey theory analysis is proposed to incorporate the relative importance of the risk factors into the determination of risk priority of failure modes. The proposed approach is applied to an offshore wind turbine system with sixteen mechanical, electrical and auxiliary assemblies, and the results are compared with the traditional FMEA.


2020 ◽  
Vol 8 (6) ◽  
pp. 416
Author(s):  
Pasin Plodpradit ◽  
Osoon Kwon ◽  
Van Nguyen Dinh ◽  
Jimmy Murphy ◽  
Ki-Du Kim

This paper presents a procedure for the coupled dynamic analysis of offshore wind turbine–jacket foundation-suction bucket piles and compares the American Petroleum Institute (API) standard method and Jeanjean’s methods used to model the piles. Nonlinear springs were used to represent soil lateral, axial, and tip resistances through the P–Y, T–Z, and Q–Z curves obtained by either API’s or Jeanjean’s methods. Rotational springs with a stiffness equated to the tangent or secant modulus characterized soil resistance to acentric loads. The procedure was implemented in X-SEA program. Analyses of a laterally loaded single pile in a soft clay soil performed in both the X-SEA and Structural Analysis Computer System (SACS) programs showed good agreements. The behaviors of a five MW offshore wind turbine system in South Korea were examined by considering waves, current, wind effects, and marine growth. In a free vibration analysis done with soil stiffness through the API method, the piles were found to bend in their first mode and to twist in the second and third modes, whereas the first three modes using Jeanjean’s method were all found to twist. The natural frequencies resulting from Jeanjean’s method were higher than those from the API method. In a forced vibration analysis, the system responses were significantly influenced by soil spring stiffness type. The procedure was found to be computationally expensive due to spring nonlinearities introduced.


Author(s):  
Toshiki Chujo ◽  
Yoshimasa Minami ◽  
Tadashi Nimura ◽  
Shigesuke Ishida

The experimental proof of the floating wind turbine has been started off Goto Islands in Japan. Furthermore, the project of floating wind farm is afoot off Fukushima Prof. in north eastern part of Japan. It is essential for realization of the floating wind farm to comprehend its safety, electric generating property and motion in waves and wind. The scale model experiments are effective to catch the characteristic of floating wind turbines. Authors have mainly carried out scale model experiments with wind turbine models on SPAR buoy type floaters. The wind turbine models have blade-pitch control mechanism and authors focused attention on the effect of blade-pitch control on both the motion of floater and fluctuation of rotor speed. In this paper, the results of scale model experiments are discussed from the aspect of motion of floater and the effect of blade-pitch control.


Sign in / Sign up

Export Citation Format

Share Document