What have we learned from past failures of investigational drugs for Alzheimer’s disease?

Author(s):  
Bruno P. Imbimbo ◽  
Mark Watling
2011 ◽  
Vol 3 ◽  
pp. CMT.S6344 ◽  
Author(s):  
Rüdiger Hardeland

The treatment of moderate to severe Alzheimer's disease is reviewed with regard to mechanisms of action, pharmacokinetics, metabolism, safety/tolerability, and efficacy in reducing cognitive, behavioral/psychiatric, functional and global symptoms. The cholinesterase inhibitors donepezil, rivastigmine and galantamine and the N-methyl-d-aspartate receptor channel blocker memantine are moderately beneficial. Small improvements over a few months are followed by slowed mental decline. Concerning cognitive, functional and global functions, these drugs are similarly effective. Cholinesterase inhibitors also reduce apathy, memantine counteracts agitation and aggression. Serious adverse effects are rare with all four drugs. Cholinesterase inhibitors bear a risk for patients with cardiac diseases. Adverse emetic events are typical for oral formulations of these drugs, but less for rivastigmine transdermal patches. Other routes of administration and use of a galantamine prodrug are currently investigated. The superiority of combination therapies over monotherapies requires further support. Promising investigational drugs include the copper/zinc ionophore PBT2 and multifunctional hybrid molecules.


2014 ◽  
Vol 23 (6) ◽  
pp. 837-846 ◽  
Author(s):  
Camryn Berk ◽  
Gaurav Paul ◽  
Marwan Sabbagh

2020 ◽  
Vol 18 (9) ◽  
pp. 868-882 ◽  
Author(s):  
Rakesh K. Singh

: Alzheimer’s disease is one of the most progressive forms of dementia, ultimately leading to death in aged populations. The major hallmarks of Alzheimer’s disease include deposition of extracellular amyloid senile plaques and intracellular neurofibrillary tangles in brain neuronal cells. Although there are classical therapeutic options available for the treatment of the diseases, however, they provide only a symptomatic relief and do not modify the molecular pathophysiological course of the disease. Recent research advances in Alzheimer’s disease have highlighted the potential role of anti-amyloid, anti-tau, and anti-inflammatory therapies. However, these therapies are still in different phases of pre-clinical/clinical development. In addition, drug repositioning/repurposing is another interesting and promising approach to explore rationalized options for the treatment of Alzheimer’s disease. : This review discusses the different aspects of the pathophysiological mechanism involved in the progression of Alzheimer’s disease along with the limitations of current therapies. Furthermore, this review also highlights emerging investigational drugs along with recent drug repurposing approaches for Alzheimer’s disease.


2019 ◽  
Vol 42 ◽  
Author(s):  
Colleen M. Kelley ◽  
Larry L. Jacoby

Abstract Cognitive control constrains retrieval processing and so restricts what comes to mind as input to the attribution system. We review evidence that older adults, patients with Alzheimer's disease, and people with traumatic brain injury exert less cognitive control during retrieval, and so are susceptible to memory misattributions in the form of dramatic levels of false remembering.


Author(s):  
J. Metuzals ◽  
D. F. Clapin ◽  
V. Montpetit

Information on the conformation of paired helical filaments (PHF) and the neurofilamentous (NF) network is essential for an understanding of the mechanisms involved in the formation of the primary lesions of Alzheimer's disease (AD): tangles and plaques. The structural and chemical relationships between the NF and the PHF have to be clarified in order to discover the etiological factors of this disease. We are investigating by stereo electron microscopic and biochemical techniques frontal lobe biopsies from patients with AD and squid giant axon preparations. The helical nature of the lesion in AD is related to pathological alterations of basic properties of the nervous system due to the helical symmetry that exists at all hierarchic structural levels in the normal brain. Because of this helical symmetry of NF protein assemblies and PHF, the employment of structure reconstruction techniques to determine the conformation, particularly the handedness of these structures, is most promising. Figs. 1-3 are frontal lobe biopsies.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Sign in / Sign up

Export Citation Format

Share Document