scholarly journals Emergent role of SARAF and store-operated Ca2+ entry in angiogenesis

2021 ◽  
Vol 154 (9) ◽  
Author(s):  
Isabel María Galeano-Otero ◽  
Raquel Del Toro ◽  
Tarik Smani

Angiogenesis is a multistep process that controls endothelial cell (EC) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promotes signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated Ca2+ entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor in this process. The aim of this study is to examine the role of SARAF in angiogenesis. In vitro angiogenesis was studied using human umbilical endothelial cells (HUVECs) for tube formation assay and vessel sprouting using rat aortic ring by Matrigel assay supplemented with endothelial cell basal medium enriched with different growth factors (VEGF, FGF, b-EGF, and IGF). HUVECs migration was evaluated by wound healing assay, and HUVECs proliferation using Ki67+ marker. Ex vivo angiogenesis was examined by whole mount mice retina on P6 in neonatal mice injected with increasing concentrations of a SOCE inhibitor, GSK-7975A, on P3, P4, and P5. We observed that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as HUVEC tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice since it reduces vessel length and the number of junctions while it increases lacunarity. Moreover, we found that knockdown of SARAF using siRNA impairs VEGF-mediated [Ca2+]i increase and HUVEC tube formation, proliferation, and migration. Our data show for the first that SOCE inhibition prevents angiogenesis using different approaches and we provide evidence indicating that SARAF plays a critical role in angiogenesis.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1800-1800
Author(s):  
Mohamed A. Zayed ◽  
Andrew McFadden ◽  
Weiping Yuan ◽  
Mary E. Hartnett ◽  
Dan Chalothorn ◽  
...  

Abstract CIB1, a 22kDa EF-hand containing calcium binding protein, was originally identified in a yeast two-hybrid screen as a binding partner for the cytoplasmic tail of the platelet integrin αIIb. CIB1 also associates with a number of kinases and modulates their activity, suggesting that CIB1 is an important regulatory molecule. Recently, we found that CIB1 is expressed in multiple endothelial cell (EC) types. We therefore tested the role of CIB1 in EC function in vitro, and in angiogenesis both ex vivo and in vivo. To test the role of CIB1 in EC function in vitro, we reduced endogenous CIB1 levels in ECs by RNA interference with an shRNA-delivered by lentivirus. CIB1 depletion significantly decreased EC haptotaxis on fibronectin and EC vascular tube formation on growth factor-reduced Matrigel. Treatment with FGF-2, an angiogenic factor, did not counter the observed inhibition of haptotaxis and tube formation by shRNA against CIB1. However, CIB1 overexpression enhanced FGF-2-induced EC haptotaxis relative to control cells. Similarly, ECs derived from CIB1 null mice exhibited a significant decrease in haptotaxis, tube formation, and proliferation compared to ECs isolated from wild-type littermate controls. In ex vivo aortic ring and tibialis anterior muscle culture assays, CIB1 null cultures supplemented with serum or FGF-2 demonstrated reduced blood vessel sprouting compared to wild-type littermate control cultures. Finally, in vivo assays for hyperoxic retinal angiogenesis and hind-limb induced-ischemia revealed a decrease in post-ischemia retinal neovascularization and Doppler hind-limb blood perfusion recovery, although developmental retinal angiogenesis in CIB1 null mice appeared normal. In conclusion, these findings support a critical role for CIB1 in EC function that appears to be important for ischemia-induced angiogenesis.


2016 ◽  
Vol 44 (01) ◽  
pp. 61-76 ◽  
Author(s):  
Sung Lyea Park ◽  
Se Yeon Won ◽  
Jun-Hui Song ◽  
Sook-Young Lee ◽  
Wun-Jae Kim ◽  
...  

Esculetin is known to inhibit tumor growth, but its effect in angiogenesis has not been studied. Here, we report the efficacy of esculetin on VEGF-induced angiogenesis. Esculetin treatment inhibited VEGF-induced proliferation and DNA synthesis of HUVECs with no cell toxicity. G1-phase cell-cycle arrest was associated with a decreased expression of cyclins and CDKs via the binding of p27KIP1. Esculetin down-regulated the MMP-2 expression in VEGF-stimulated HUVECs, which suppressed colony tube formation and migration. Esculetin reduced the phosphorylation of VEGFR-2 and the downstream signaling of VEGFR-2, including ERK1/2 and eNOS/Akt pathways. Esculetin suppressed microvessel outgrowth from an aortic ring ex vivo model treated with VEGF, and blocked the VEGF-induced formation of new blood vessels and hemoglobin content in an in vivo Matrigel plug model. Collectively, VEGF-stimulated responses in angiogenesis were inhibited in vitro and in vivo, providing a theoretical basis for effective use against anti-angiogenic therapies.


1998 ◽  
Vol 111 (15) ◽  
pp. 2189-2195 ◽  
Author(s):  
X. Huang ◽  
J. Wu ◽  
S. Spong ◽  
D. Sheppard

The integrin alphavbeta6 is expressed on a variety of epithelial cells during dynamic processes including organogenesis, tissue injury and malignant transformation. However, because of the lack of tools to specifically inhibit the function of this integrin, little is known about its effects on cell behavior. To directly examine the role of this integrin in cell migration, we used keratinocytes derived from wild-type mice or mice expressing a null mutation in the beta6 subunit (beta6-/-) to perform migration assays in vitro. Migration on the known alphavbeta6 ligand, fibronectin was reduced in keratinocytes from beta6-/- mice. Interestingly, keratinocytes from beta6-/- mice also demonstrated markedly reduced migration on vitronectin, a protein not previously known to be a ligand for alphavbeta6. An anti-alphavbeta6 monoclonal antibody 10D5, generated by immunization of beta6-/- mice with murine keratinocytes, inhibited adhesion and migration of wild-type keratinocyte on both vitronectin and fibronectin to levels similar to those seen with keratinocytes from beta6-/- mice. alphavbeta6-mediated migration on both ligands was dramatically augmented by treatment with phorbol myrisate acetate (PMA) or with hepatocyte growth factor, and augmentation of migration by either stimulus could be abolished by the PKC inhibitor GF109203X, suggesting a critical role for PKC in enhancement of alphavbeta6-mediated cell migration.


2019 ◽  
Vol 166 (1) ◽  
pp. 107-113 ◽  
Author(s):  
Jian Pan ◽  
Xianglong Wang ◽  
Dequan Li ◽  
Jianmin Li ◽  
Zipei Jiang

Abstract The aim of this study was to investigate the effect of mesenchymal stem cells (MSCs) on the angiogenesis of human umbilical vein endothelial cells (HUVECs). MSCs were subconjunctival injected into rat corneal alkali burn models. Their impacts on the degree of corneal neovascularization (CNV) and corneal opacity were evaluated at 3, 6, 9 and 12 days after injection. An in vitro experiment of MSCs affecting HUVECs angiogenesis was performed and evaluated using the tube formation assay. The results showed that both CNV and corneal opacity were decreased in rats after MSCs injection. In HUVECs, angiogenesis of cells was inhibited by miR-211 overexpression. miR-211 negatively regulated Prox1 expression. Knockdown of miR-211 blocked the decrease of Prox1 expression induced by MSCs and the inhibitory effect of MSCs on the angiogenesis of HUVECs. The critical role of miR-211 in MSCs inhibition of corneal angiogenesis was confirmed in rat experiments. We concluded that MSCs inhibited the angiogenesis of HUVEC through miR-211 mediating the down-regulation of Prox1.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
F Ravera ◽  
S Femmino' ◽  
C Penna ◽  
L Franchin ◽  
F Angelini ◽  
...  

Abstract Background Extracellular vesicles (EV) are recognized as carriers of relevant biological effects and have been identified as regulators of cell-to-cell communication contributing to several patho-physiological processes. These processes include angiogenesis/coagulation/tissue repair/inflammation. In ischemia/reperfusion (I/R) settings, along with the direct effects of the I/R itself, paracrine mechanisms associated with the activation of the inflammatory response, primary involving endothelial cells, are crucial drivers of both vessel and cardiomyocyte damage. Purpose Since in models of myocardial I/R injury the role of EV released from endothelial cells is still unclear, our hypothesis was to provide insight on this specific topic. To this end, naïve endothelial cell (EC)-derived EV (eEV) and eEV released in response to the pro-inflammatory cytokine interleukin-3 (IL-3) (eEV-IL-3) have been evaluated on different I/R models. Methods eEV were characterized by MACSPlex-Exosome-Kit and western blot analysis. For the in-vitro hypoxia-reoxygenation (H/R) experiments, H9c2 or EC were pretreated with eEV, eEV-IL-3 (1x104 EV/cell) or IL-3 (10ng/ml) for 2 hours and then exposed to hypoxia (1% O2, 5% CO2) for additional 2 hours in the presence of eEV, eEV-IL-3 or IL-3 and subsequently reoxygenated (21% O2 and 5% CO2) for 1 hour. To verify the effect of EC treated with eEV, eEV-IL-3 or IL-3 on H9c2 and subjected to H/R protocol, transwell assay was used. At the end of the H/R protocol, cell viability was assessed. For ex-vivo experiments, isolated rat hearts, pretreated with a buffer containing EV (from EC pretreated or not with IL-3), were subjected to 30 minutes global normothermic ischemia and 1 hour reperfusion. Triton infusion was also used as a model of endothelial damage. At the end of I/R, the infarct size was measured and expressed as a percentage of total left ventricular mass (LVM). The role of eNOS/guanylyl-cyclase/MEK1/2 pathways in mediating eEV biological effects was also evaluated using different inhibitors both in in-vitro and ex-vivo models. Finally, protein profiles of eEV and eEV-IL-3 were analyzed using label free mass spectrometry. Results eEV and eEV-IL-3 protect EC, but not H9c2 exposed to H/R protocol, while eEV, but not eEV-IL-3-treatment limits I/R injury in the rat heart. Rat hearts pre-treated with triton significantly avoid eEV-induced cardio-protection. Transwell assay showed a reduction of H9C2 mortality after treatment with both eEV and eEV-IL-3. Proteomic analysis revealed that MEK1/2 and the endothelial-NOS (eNOS)-antagonist caveolin-1 were differentially expressed in eEV and eEV-IL-3. The use of eNOS/guanylyl-cyclase/MEK1/2 inhibitors prevented eEV-induced cardio-protection. Conclusions These observations indicate that eEV, but not eEV-IL-3, have cardio-protective effects when given as preconditioning agents. We have also shown that the activation of eNOS/GC/MEK1/2 pathway is crucial for eEV-mediated cardio-protection. Funding Acknowledgement Type of funding source: None


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 428.2-428
Author(s):  
L. Wang ◽  
W. Tan ◽  
F. Wang ◽  
M. Zhang

Background:Our team have previously reported that Adiponectin correlates well with synovial inflammation and progressive bone erosion in rheumatoid arthritis (RA). Angiogenesis is another important part, which plays a critical role in the pathogenesis of RA.Objectives:We hypothesized that adiponectin induces synovial angiogenesis in RA.Methods:Single-cell RNA sequencing (scRNA-Seq) was used to screen cellular changes in local knee joint of collagen-induced arthritis (CIA) after intraarticularly injected of adiponectin. Chimera models of synovium-cartilage-NOD/SCID mice, matrigel plug assay and rat aortic ring assay were performed to demonstrate the pro-angiogenesis role of adiponectin. Cellular experiment, including proliferation, migration, apoptosis, tube formation and angiogenesis related gene expression profile, were detected with Human Umbilical Vein Endothelial Cells (HUVEC) and Mice Lung Microvessel Endothelial Cell (MLMEC) after adiponectin stimulation. Seahorse was performed to clear the influence of adiponectin to cell metabolism.Results:The synovium and pannus hyperplasia worse in CIA model after intraarticularly injected of adiponectin, along with more serious synovitis and bone erosion. ScRNA-Seq of synovial tissues separated from CIA reminded that endothelial cell barbarically grows via metabolic remodeling after stimulated with adiponectin. Synovial chimera, matrigel plug and rat aortic ring shows adiponectin accelerates angiogenesis significantly in different background conditions. In vitro, endothelial cell proliferation detecting by RCTA and CCK8, migration by wound healing and transwell, apoptosis by FACS, tube formation and angiogenesis related gene expression profile by PCR-ARRAY were promoted by adiponectin in both HUVEC and MLMEC. Seahorse showed HUVEC made more use of glycolysis after co-cultured with adiponectin, a method of cell energy supply that tumor cells possess called warburg effect, that drives endothelial cell hyperplasia in severe environment.Conclusion:As a classic metabolic regulator, adiponectin exacerbates CIA by promoting angiogenesis through metabolic remodeling. The findings not only provide a novel insight into the pathogenic role of adiponectin, but also reveals a potential therapeutical strategy to attenuate revascularization in RA.Disclosure of Interests:None declared


2020 ◽  
Author(s):  
Natalie Finch ◽  
Sarah Fawaz ◽  
Chris Neal ◽  
Matthew Butler ◽  
Vivian Lee ◽  
...  

Background: The study of glomerular endothelial cell (GEnC) fenestrations including key regulatory factors is neglected despite their loss in diabetic nephropathy, a disease associated with decreased filtration function, being previously described. Methods: We comprehensively characterised GEnC fenestral and renal filtration functional changes including measurement of glomerular ultrafiltration coefficient and glomerular filtration rate (GFR) in diabetic mice and humans. We further evaluated Eps homology domain protein-3 (Ehd3) as a potential regulator of GEnC fenestrations. Results: This study identified loss of GEnC fenestration density which was associated with decreased renal filtration function in diabetic nephropathy. We also identified increased GEnC fenestration width, an ultrastructural change that may develop to maintain filtration surface area. GEnC fenestration width was negatively associated with renal filtration function considered a result of development of diaphragms in widening fenestrations providing resistance to filtration. The increased presence of diaphragmed fenestrations in diabetes was supported by increased PLVAP1 expression. We identified decreased glomerular Ehd3 expression in diabetes and demonstrated its association with GEnC fenestration measurements suggesting its role in regulating fenestrations. We further demonstrated reduced fenestration formation in vitro in an Ehd3 knockdown cell line. Ehd3 was positively associated with filtration function suggesting loss of glomerular Ehd3 expression in disease may contribute to declining glomerular filtration function through aberrant GEnC fenestration regulation. Conclusions: This is the first study to demonstrate the critical role of GEnC fenestrations in renal filtration function and identify a key regulator, Ehd3, that may serve as a therapeutic target to retore filtration function in disease.


Author(s):  
Isabel Galeano-Otero ◽  
Raquel Del Toro ◽  
Abdel-Majid Khatib ◽  
Juan Antonio Rosado ◽  
Antonio Ordóñez-Fernández ◽  
...  

Angiogenesis is a multistep process that controls endothelial cells (ECs) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promote signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated calcium entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor, and Orai1, the pore-forming subunit of the store-operated calcium channel (SOCC), in angiogenesis. Here, we show that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as human umbilical vein endothelial cell (HUVEC) tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice, since it reduces vessel length and the number of junctions, while it increases lacunarity. Moreover, we find that SARAF and Orai1 are involved in VEGF-mediated [Ca2+]i increase, and their knockdown using siRNA impairs HUVEC tube formation, proliferation, and migration. Finally, immunostaining and in situ proximity ligation assays indicate that SARAF likely interacts with Orai1 in HUVECs. Therefore, these findings show for the first time a functional interaction between SARAF and Orai1 in ECs and highlight their essential role in different steps of the angiogenesis process.


2009 ◽  
Vol 37 (6) ◽  
pp. 1214-1217 ◽  
Author(s):  
Ana Raquel Verissimo ◽  
John M.J. Herbert ◽  
Victoria L. Heath ◽  
John A. Legg ◽  
Helen Sheldon ◽  
...  

We have applied search algorithms to expression databases to identify genes whose expression is restricted to the endothelial cell. Such genes frequently play a critical role in endothelial biology and angiogenesis. Two such genes are the roundabout receptor Robo4 and the ECSCR (endothelial-cell-specific chemotaxis regulator). Endothelial cells express both Robo1 and Robo4, which we have knocked down using siRNA (small interfering RNA) and then studied the effect in a variety of in vitro assays. Both Robo4 and Robo1 knockdown inhibited in vitro tube formation on Matrigel™. Transfection of Robo4 into endothelial cells increased the number of filopodial extensions from the cell, but failed to do so in Robo1-knockdown cells. Separate immunoprecipitation studies showed that Robo1 and Robo4 heterodimerize. We conclude from this and other work that a heteroduplex of Robo1 and Robo4 signals through WASP (Wiskott–Aldrich syndrome protein) and other actin nucleation-promoting factors to increase the number of filopodia and cell migration. Knockdown of the transmembrane ECSCR protein in endothelial cells also reduced chemotaxis and impaired tube formation on Matrigel™. Yeast two-hybrid analysis and immunoprecipitation studies showed that, in contrast with the roundabouts, ECSCR binds to the actin-modulatory filamin A. We conclude that all three of these genes are critical for effective endothelial cell migration and, in turn, angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document