Printed in-plane electrolyte-gated transistor based on zinc oxide

Author(s):  
Rogério Miranda Morais ◽  
Douglas Henrique Vieira ◽  
Maykel dos Santos Klem ◽  
Cristina Gaspar ◽  
Luis Pereira ◽  
...  

Abstract Printed electronics is a reputable research area that encourages the search for simple alternatives of manufacturing processes for low-cost, eco-friendly, and biodegradable electronic devices. Among these devices, electrolyte-gated transistors (EGTs) stand out due to their simple manufacturing process and architecture. Here we report the study of printed electrolyte-gated transistors with in-plane gate architecture (IPGT) based on zinc oxide nanoparticles (ZnO-NPs). The drain, source, and gate electrodes with two different W/L channel ratios were fabricated using a screen-printed carbon-based ink. We also produced a conventional top-gate transistor as a control device, using the same structure as the IPGT described above by adding an ITO strip positioned over the electrolyte as the top-gate electrode. The IPGT with W/L = 5 presented a high mobility of 7.1 cm2V-1s-1, while the W/L = 2.5 device exhibited a mobility of 3.7 cm2V-1s-1. We found that the measured field-effect mobility of the device can be affected by the high contact resistance from the carbon electrodes. This effect could be observed when the geometric parameters of the devices were changed. Furthermore, we also found that the IPGT with W/L = 5 exhibited better values for mobility and transconductance than the top-gate transistor, showing that the IPGTs setup is a good promise for cheap and printed transistors with performance comparable to standard top-gate transistors.

Chemosensors ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 264
Author(s):  
Florin C. Loghin ◽  
José F. Salmerón ◽  
Paolo Lugli ◽  
Markus Becherer ◽  
Aniello Falco ◽  
...  

In this work, we present a do-it-yourself (DIY) approach for the environmental-friendly fabrication of printed electronic devices and sensors. The setup consists only of an automated handwriting robot and pens filled with silver conductive inks. Here, we thoroughly studied the fabrication technique and different optimized parameters. The best-achieved results were 300 mΩ/sq as sheet resistance with a printing resolution of 200 µm. The optimized parameters were used to manufacture fully functional electronics devices: a capacitive sensor and a RFID tag, essential for the remote reading of the measurements. This technique for printed electronics represents an alternative for fast-prototyping and ultra-low-cost fabrication because of both the cheap equipment required and the minimal waste of materials, which is especially interesting for the development of cost-effective sensors.


2011 ◽  
Vol 671 ◽  
pp. 47-68 ◽  
Author(s):  
S. Nagarani ◽  
M. Jayachandran ◽  
C. Sanjeeviraja

Thin films continue to become more and more integral to numerous applications in today's advancing technologies. In recent years, thin film science has grown world-wide into a major research area. The importance of coatings and the synthesis of new materials for industry have resulted in a tremendous increase of innovative thin film processing technologies. Thin film properties are strongly dependent on the method of deposition, the substrate temperature, the rate of deposition, the background pressure etc. Hardness, adhesion, non porosity, high mobility of charge carriers / insulating properties and chemical inertness, which are possible with a selection of suitable functional materials and deposition techniques. There are number of different techniques that facilitate the deposition of stable thin films of oxide materials on suitable substrates. Material properties of gallium zinc oxide thin films and all the techniques used to deposit thin films are summarized with an elaborative account along with our results.


Author(s):  
Abdalla Abdelrahman Mohamed ◽  
Bedor Mohammed Khairalla

The capabilities of computer through the methodologies of scientific computing used to solve many manufacturing difficulties of semiconductor materials, across all disciplines, because it is low cost and the availability of resources. In this paper, investigation of unique electronic property of zinc oxide sheet, which can be an attractive semiconductor material for many electronic devices applications, is carried out. The electronic structure of zinc oxide surface and the effect of substituting lithium atoms using CRYSTAL06 code showed that the bulk ZnO band gap ≈ 3.3eV which is in good agreement with experimental results≈3.4eV. After generating slab structure, the band gap has been increased to 5.5eV, exhibiting high resistivity surface. Substituting of lithium to slab has decreased band gap to 4.4eV. The results shows that there is reduction in band-gap and decreases in resistivity, predicting that Small amount of Lithium could change the zinc oxide from wide band semiconductor to half-metal compound.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1636 ◽  
Author(s):  
Sangkil Kim

The newly developed research area of inkjet-printed radio frequency (RF) electronics on cellulose-based and synthetic paper substrates is introduced in this paper. This review paper presents the electrical properties of the paper substrates, the printed silver nanoparticle-based thin films, the dielectric layers, and the catalyst-based metallization process. Numerous inkjet-printed microwave passive/ative systems on paper, such as a printed radio frequency identification (RFID) tag, an RFID-enabled sensor utilizing carbon nanotubes (CNTs), a substrate-integrated waveguide (SIW), fully printed vias, an autonomous solar-powered beacon oscillator (active antenna), and artificial magnetic conductors (AMC), are discussed. The reported technology could potentially act as the foundation for true “green” low-cost scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.


2020 ◽  
Vol 5 (3) ◽  
pp. 101-107
Author(s):  
Sahar Galedari ◽  
Maryam Teimouri

Introduction: Recently, the biosynthesis of nanoparticles (NPs) using medicinal plants has attracted the attention of researchers due to their low cost and environmental compatibility. The aim of this study was to determine the anti-biofilm effects of zinc oxide (ZnO)-NPs synthesized using the Artemisia plant extract on the clinical samples of Pseudomonas aeruginosa. Methods: In this experimental study, the alcoholic extract of Artemisia was prepared using the Soxhlet extraction method to synthesize ZnO-NPs. Then, the physical and chemical structures of the NPs were investigated using transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultraviolet/visible (UV-Vis) techniques. In addition, the gene expression of ndvB was analyzed by the polymerase chain reaction method. Finally, anti-biofilm and antimicrobial effects were evaluated using the minimum inhibitory concentration test and microtiter plate assay. Results: The antimicrobial results showed that ZnO-NPs had a spherical structure approved by the UV-Vis test. Further, ZnO-NPs had inhibitory effects on biofilm formation by P. aeruginosa strains. The results demonstrated that ZnO-NPs were effective on the isolations at the lowest and highest viscosities of 3.125 and 100 mg/mL, respectively. Conclusion: The biosynthesis of ZnO-NPs using the Artemisia plant extract is low cost and easy. Moreover, these NPs can be used as a drug with antimicrobial and anti-biofilm effects.


RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13532-13542 ◽  
Author(s):  
Ashwath Narayana ◽  
Sachin A. Bhat ◽  
Almas Fathima ◽  
S. V. Lokesh ◽  
Sandeep G. Surya ◽  
...  

An OFET-based CO gas sensor has been demonstrated where ZnO NPs realized by an inexpensive, environmentally friendly method have been employed as an active medium.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6983
Author(s):  
Abdullah M. Abdo ◽  
Amr Fouda ◽  
Ahmed M. Eid ◽  
Nayer M. Fahmy ◽  
Ahmed M. Elsayed ◽  
...  

The synthesis of nanoparticles by green approaches is gaining unique importance due to its low cost, biocompatibility, high productivity, and purity, and being environmentally friendly. Herein, biomass filtrate of Pseudomonas aeruginosa isolated from mangrove rhizosphere sediment was used for the biosynthesis of zinc oxide nanoparticles (ZnO-NPs). The bacterial isolate was identified based on morphological, physiological, and 16S rRNA. The bio-fabricated ZnO-NPs were characterized using color change, UV-visible spectroscopy, FT-IR, TEM, and XRD analyses. In the current study, spherical and crystalline nature ZnO-NPs were successfully formed at a maximum SPR (surface plasmon resonance) of 380 nm. The bioactivities of fabricated ZnO-NPs including antibacterial, anti-candida, and larvicidal efficacy were investigated. Data analysis showed that these bioactivities were concentration-dependent. The green-synthesized ZnO-NPs exhibited high efficacy against pathogenic Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and unicellular fungi (Candida albicans) with inhibition zones of (12.33 ± 0.9 and 29.3 ± 0.3 mm), (19.3 ± 0.3 and 11.7 ± 0.3 mm), and (22.3 ± 0.3 mm), respectively, at 200 ppm. The MIC value was detected as 50 ppm for E. coli, B. subtilis, and C. albicans, and 200 ppm for S. aureus and P. aeruginosa with zones of inhibition ranging between 11.7 ± 0.3–14.6 ± 0.6 mm. Moreover, the biosynthesized ZnO-NPs showed high mortality for Culex pipiens with percentages of 100 ± 0.0% at 200 ppm after 24 h as compared with zinc acetate (44.3 ± 3.3%) at the same concentration and the same time.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2174
Author(s):  
Khaled AbouAitah ◽  
Abdou K. Allayh ◽  
Jacek Wojnarowicz ◽  
Yasser M. Shaker ◽  
Anna Swiderska-Sroda ◽  
...  

The COVID-19 pandemic has strongly impacted daily life across the globe and caused millions of infections and deaths. No drug therapy has yet been approved for the clinic. In the current study, we provide a novel nanoformulation against DNA and RNA viruses that also has a potential for implementation against COVID-19. The inorganic–organic hybrid nanoformulation is composed of zinc oxide nanoparticles (ZnO NPs) functionalized with triptycene organic molecules (TRP) via EDC/NHS coupling chemistry and impregnated with a natural agent, ellagic acid (ELG), via non-covalent interactions. The physicochemical properties of prepared materials were identified with several techniques. The hybrid nanoformulation contained 9.5 wt.% TRP and was loaded with up to 33.3 wt.% ELG. ELG alone exhibited higher cytotoxicity than both the ZnO NPs and nanoformulation against host cells. The nanoformulation efficiently inhibited viruses, compared to ZnO NPs or ELG alone. For H1N1 and HCoV-229E (RNA viruses), the nanoformulation had a therapeutic index of 77.3 and 75.7, respectively. For HSV-2 and Ad-7 (DNA viruses), the nanoformulation had a therapeutic index of 57.5 and 51.7, respectively. In addition, the nanoformulation showed direct inactivation of HCoV-229E via a virucidal mechanism. The inhibition by this mechanism was > 60%. Thus, the nanoformulation is a potentially safe and low-cost hybrid agent that can be explored as a new alternative therapeutic strategy for COVID-19.


Author(s):  
Chunhui Liu ◽  
Chengyi Xiao ◽  
Weiwei Li

Zinc oxide nanoparticles (ZnO NPs) are one of the well-known electron transporting layers (ETLs) in flexible electronics, especially for organic solar cells (OSCs). This is due to their high mobility...


2019 ◽  
Vol 20 (7) ◽  
pp. 542-550 ◽  
Author(s):  
Nahla S. El-Shenawy ◽  
Reham Z. Hamza ◽  
Fawziah A. Al-Salmi ◽  
Rasha A. Al-Eisa

Background: Zinc oxide nanoparticles (ZnO NPs) are robustly used biomedicine. Moreover, no study has been conducted to explore the consequence of green synthesis of ZnO NPs with Camellia sinensis (green tea extract, GTE) on kidneys of rats treated with monosodium glutamate (MSG). Methods: Therefore, the objective of the research was designed to explore the possible defensive effect of GTE/ZnO NPs against MSG-induced renal stress investigated at redox and histopathological points. Results: The levels of urea and creatinine increased as the effect of a high dose of MSG, in addition, the myeloperoxidase and xanthine oxidase activates were elevated significantly with the high dose of MSG. The levels of non-enzymatic antioxidants (uric acid, glutathione, and thiol) were decreased sharply in MSG-treated rats as compared to the normal group. Conclusion: The data displayed that GTE/ZnO NPs reduced the effects of MSG significantly by reduction of the level peroxidation and enhancement intracellular antioxidant. These biochemical findings were supported by histopathology evaluation, which showed minor morphological changes in the kidneys of rats.


Sign in / Sign up

Export Citation Format

Share Document