Mathematical modeling of the stress-strain state of flexible threads with regard to plastic deformations

2018 ◽  
Vol 1084 ◽  
pp. 012008 ◽  
Author(s):  
D Tarasov ◽  
V Konovalov ◽  
V Zaitsev ◽  
Y Rodionov
Vestnik MGSU ◽  
2016 ◽  
pp. 28-38
Author(s):  
Ilshat Talgatovich Mirsayapov

The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.


2021 ◽  
Vol 2131 (3) ◽  
pp. 032095
Author(s):  
M V Ariskin ◽  
D O Martyshkin ◽  
I V Vanin

Abstract Design models of single-component and three-component samples were developed on glued fiberglass washers in order to investigate the stress-strain state (SF) of the elements of joints of wooden structures. The picture and the nature of the actual stressed-deformed state of the wooden element with glued washers are obtained. Quite high bearing capacity of wooden structures connection is shown.


2016 ◽  
Vol 38 (06) ◽  
pp. 124-130
Author(s):  
Andrei Mastislavovich Korneev ◽  
◽  
Olga Petrovna Buzina ◽  
Andrei Vladimirovich Sukhanov ◽  
Ilya Andreevich Shipulin ◽  
...  

2016 ◽  
Author(s):  
M. A. Grinev ◽  
A. N. Anoshkin ◽  
P. V. Pisarev ◽  
V. Yu. Zuiko ◽  
G. S. Shipunov

2019 ◽  
Vol 27 (4) ◽  
pp. 488-503
Author(s):  
Alexandr Anatolyevich Treschev ◽  
Alexander Anatolyevich Bobryshev ◽  
Victor Grigoryevich Telichko ◽  
Lenar Nurgaleevich Shafigullin ◽  
Alexander Valeryevich Bashkatov

In this article, the construction of finite-elemental model of definition of stress-strain state of reinforced concrete plates in conditions of active deformation and simple loading in combination with long-term influence of chloride-containing operating environment. Non-linear behavior of concrete is simulated based on the determining relations proposed by Treschev, cracking and plastic deformations in armature are taken into account. The impact of the aggressive environment is taken into account in accordance with the model proposed by Petrov and Penina. In the article all basic correlations of finite elements method in convenient for software realization on a computer are given. As the object of research for this article is a concrete plate reinforced with steel reinforcement in a stretched area, which is under the joint influence of mechanical load and aggressive chloride-containing environment on the protective polymer–concrete layer. The load was taken evenly distributed across the entire slab area. At the solution of this problem the non-linear sensitivity of the basic material (concrete) to the type of the tense condition, plastic deformations in armature, degradation of a protective concrete at influence of external aggressive environment are taken into account. In the article some especially characteristic results of mathematical modeling of the specified model problem are given. The obtained results of joint influence on the plate of mechanical load and aggressive environment are analyzed.


Sign in / Sign up

Export Citation Format

Share Document