scholarly journals Reflectance polarization ex vivo measurements of gastrointestinal carcinoma lesions for cancer diagnostics

2021 ◽  
Vol 1859 (1) ◽  
pp. 012041
Author(s):  
S Ilyov ◽  
D Ivanov ◽  
Ts Genova ◽  
V Mircheva ◽  
L Zaharieva ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Mikhail T. Silk ◽  
Nina Mikkilineni ◽  
Tarik C. Silk ◽  
Emily C. Zabor ◽  
Irina Ostrovnaya ◽  
...  

Context. Targeted needle biopsies are increasingly performed for the genetic characterization of cancer. While the nucleic acid content of core needle biopsies after standard pathology processing (i.e., formalin fixation and paraffin embedding (FFPE)) has been previously reported, little is known about the potential yield for molecular analysis at the time of biopsy sample acquisition. Objectives. Our objective was to improve the understanding of DNA and RNA yields from commonly used core needle biopsy techniques prior to sample processing. Methods. We performed 552 ex vivo 18 and 20G core biopsies in the lungs, liver, and kidneys. DNA and RNA were extracted from fresh-frozen core samples and quantified for statistical comparisons based on needle gauge, biopsy site, and tissue type. Results. Median tumor DNA yields from all 18G and 20G samples were 5880 ng and 2710 ng, respectively. Median tumor RNA yields from all 18G and 20G samples were 1100 ng and 230 ng, respectively. A wide range of DNA and RNA quantities (1060–13,390 ng and 370–6280 ng, respectively) were acquired. Median DNA and RNA yields from 18G needles were significantly greater than those from 20G needles across all organs (p<0.001). Conclusions. Core needle biopsy techniques for cancer diagnostics yield a broad range of DNA and RNA for molecular pathology, though quantities are greater than what has been reported for FFPE processed material. Since non-formalin-fixed DNA is advantageous for molecular studies, workflows that optimize core needle biopsy yield for molecular characterization should be explored.


2020 ◽  
Vol 6 (3) ◽  
pp. eaax2861 ◽  
Author(s):  
Yifat Brill-Karniely ◽  
Dvir Dror ◽  
Tal Duanis-Assaf ◽  
Yoel Goldstein ◽  
Ouri Schwob ◽  
...  

The malignancy potential is correlated with the mechanical deformability of the cancer cells. However, mechanical tests for clinical applications are limited. We present here a Triangular Correlation (TrC) between cell deformability, phagocytic capacity, and cancer aggressiveness, suggesting that phagocytic measurements can be a mechanical surrogate marker of malignancy. The TrC was proved in human prostate cancer cells with different malignancy potential, and in human bladder cancer and melanoma cells that were sorted into subpopulations based solely on their phagocytic capacity. The more phagocytic subpopulations showed elevated aggressiveness ex vivo and in vivo. The uptake potential was preserved, and differences in gene expression and in epigenetic signature were detected. In all cases, enhanced phagocytic and aggressiveness phenotypes were correlated with greater cell deformability and predicted by a computational model. Our multidisciplinary study provides the proof of concept that phagocytic measurements can be applied for cancer diagnostics and precision medicine.


Diagnostics ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2048
Author(s):  
Alla Synytsya ◽  
Aneta Vaňková ◽  
Michaela Miškovičová ◽  
Jaromír Petrtýl ◽  
Luboš Petruželka

Colorectal cancer is one of the most common and often fatal cancers in humans, but it has the highest chance of a cure if detected at an early precancerous stage. Carcinogenesis in the colon begins as an uncontrolled growth forming polyps. Some of these polyps can finally be converted to colon cancer. Early diagnosis of adenomatous polyps is the main approach for screening and preventing colorectal cancer, and vibration spectroscopy can be used for this purpose. This work is focused on evaluating FTIR and Raman spectroscopy as a tool in the ex vivo analysis of colorectal polyps, which could be important for the early diagnosis of colorectal carcinoma. Multivariate analyses (PCA and LDA) were used to assist the spectroscopic discrimination of normal colon tissue, as well as benign and malignant colon polyps. The spectra demonstrated evident differences in the characteristic bands of the main tissue constituents, i.e., proteins, nucleic acids, lipids, polysaccharides, etc. Suitable models for discriminating the three mentioned diagnostic groups were proposed based on multivariate analyses of the spectroscopic data. LDA classification was especially successful in the case of a combined set of 55 variables from the FTIR, FT Raman and dispersion Raman spectra. This model can be proposed for ex vivo colorectal cancer diagnostics in combination with the colonoscopic extraction of colon polyps for further testing. This pilot study is a precursor for the further evaluation of the diagnostic potential for the simultaneous in vivo application of colonoscopic Raman probes.


2020 ◽  
Author(s):  
Ava P. Soleimany ◽  
Jesse D. Kirkpatrick ◽  
Susan Su ◽  
Jaideep S. Dudani ◽  
Qian Zhong ◽  
...  

ABSTRACTRecent years have seen the emergence of conditionally activated diagnostics and therapeutics that leverage protease-cleavable peptide linkers to enhance their specificity for cancer. However, due to a lack of methods to measure and localize protease activity directly within the tissue microenvironment, the design of protease-activated agents has been necessarily empirical, yielding suboptimal results when translated to patients. To address the need for spatially resolve d protease activity profiling in cancer, we developed a new class of in situ probes that can be applied to fresh-frozen tissue sections in a manner analogous to immunofluorescence staining. These activatable zymography probes (AZPs) detected dysregulated protease activity in human prostate cancer biopsy samples, enabling disease classification. We then leveraged AZPs within a generalizable framework to design conditional cancer diagnostics and therapeutics, and demonstrated the power of this approach in the Hi-Myc mouse model of prostate cancer, which models features of early pathogenesis. Multiplexed screening against barcoded substrates yielded a peptide, S16, that was robustly and specifically cleaved by tumor-associated metalloproteinases in the Hi-Myc model. In situ labeling with an AZP incorporating S16 revealed a potential role of metalloproteinase dysregulation in proliferative, pre-malignant Hi-Myc prostatic glands. Last, we incorporated S16 into an in vivo imaging probe that, after systemic administration, perfectly classified diseased and healthy prostates, supporting the relevance of ex vivo activity assays to in vivo translation. We envision AZPs will enable new insights into the biology of protease dysregulation in cancer and accelerate the development of conditional diagnostics and therapeutics for multiple cancer types.


Author(s):  
E.J. Prendiville ◽  
S. Laliberté Verdon ◽  
K. E. Gould ◽  
K. Ramberg ◽  
R. J. Connolly ◽  
...  

Endothelial cell (EC) seeding is postulated as a mechanism of improving patency in small caliber vascular grafts. However the majority of seeded EC are lost within 24 hours of restoration of blood flow in previous canine studies . We postulate that the cells have insufficient time to fully develop their attachment to the graft surface prior to exposure to hemodynamic stress. We allowed EC to incubate on fibronectin-coated ePTFE grafts for four different time periods after seeding and measured EC retention after perfusion in a canine ex vivo shunt circuit.Autologous canine EC, were enzymatically harvested, grown to confluence, and labeled with 30 μCi 111 Indium-oxine/80 cm 2 flask. Four groups of 5 cm x 4 mm ID ePTFE vascular prostheses were coated with 1.5 μg/cm.2 human fibronectin, and seeded with 1.5 x 105 EC/ cm.2. After seeding grafts in Group 1 were incubated in complete growth medium for 90 minutes, Group 2 were incubated for 24 hours, Group 3 for 72 hours and Group 4 for 6 days. Grafts were then placed in the canine ex vivo circuit, constructed between femoral artery and vein, and subjected to blood flow of 75 ml per minute for 6 hours. Continuous counting of γ-activity was made possible by placing the seeded graft inside the γ-counter detection crystal for the duration of perfusion. EC retention data after 30 minutes, 2 hours and 6 hours of flow are shown in the table.


2019 ◽  
Vol 133 (22) ◽  
pp. 2283-2299
Author(s):  
Apabrita Ayan Das ◽  
Devasmita Chakravarty ◽  
Debmalya Bhunia ◽  
Surajit Ghosh ◽  
Prakash C. Mandal ◽  
...  

Abstract The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)−/− mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with Fcɣ receptor I (FcɣRI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE−/− mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcɣR1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


2020 ◽  
Vol 63 (9) ◽  
pp. 2921-2929
Author(s):  
Alan H. Shikani ◽  
Elamin M. Elamin ◽  
Andrew C. Miller

Purpose Tracheostomy patients face many adversities including loss of phonation and essential airway functions including air filtering, warming, and humidification. Heat and moisture exchangers (HMEs) facilitate humidification and filtering of inspired air. The Shikani HME (S-HME) is a novel turbulent airflow HME that may be used in-line with the Shikani Speaking Valve (SSV), allowing for uniquely preserved phonation during humidification. The aims of this study were to (a) compare the airflow resistance ( R airflow ) and humidification efficiency of the S-HME and the Mallinckrodt Tracheolife II tracheostomy HME (M-HME) when dry (time zero) and wet (after 24 hr) and (b) determine if in-line application of the S-HME with a tracheostomy speaking valve significantly increases R airflow over a tracheostomy speaking valve alone (whether SSV or Passy Muir Valve [PMV]). Method A prospective observational ex vivo study was conducted using a pneumotachometer lung simulation unit to measure airflow ( Q ) amplitude and R airflow , as indicated by a pressure drop ( P Drop ) across the device (S-HME, M-HME, SSV + S-HME, and PMV). Additionally, P Drop was studied for the S-HME and M-HME when dry at time zero (T 0 ) and after 24 hr of moisture testing (T 24 ) at Q of 0.5, 1, and 1.5 L/s. Results R airflow was significantly less for the S-HME than M-HME (T 0 and T 24 ). R airflow of the SSV + S-HME in series did not significant increase R airflow over the SSV or PMV alone. Moisture loss efficiency trended toward greater efficiency for the S-HME; however, the difference was not statistically significant. Conclusions The turbulent flow S-HME provides heat and moisture exchange with similar or greater efficacy than the widely used laminar airflow M-HME, but with significantly lower resistance. The S-HME also allows the innovative advantage of in-line use with the SSV, hence allowing concurrent humidification and phonation during application, without having to manipulate either device.


2007 ◽  
Vol 177 (4S) ◽  
pp. 614-614 ◽  
Author(s):  
Gunnar Wendt-Nordahl ◽  
Stefanie Huckele ◽  
Patrick Honeck ◽  
Peter Aiken ◽  
Thomas Knoll ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document