scholarly journals Data privacy protection based on homomorphic encryption

2021 ◽  
Vol 2037 (1) ◽  
pp. 012129
Author(s):  
Yarong Lv
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yichuan Wang ◽  
Xiaolong Liang ◽  
Xinhong Hei ◽  
Wenjiang Ji ◽  
Lei Zhu

With the rapid development of 5G technology, its high bandwidth, high reliability, low delay, and large connection characteristics have opened up a broader application field of IoT. Moreover, AIoT (Artificial Intelligence Internet of Things) has become the new development direction of IoT. Through deep learning of real-time data provided by the Internet of Things, AI can judge user habits more accurately, make devices behave in line with user expectations, and become more intelligent, thus improving product user experience. However, in the process, there is a lot of data interaction between the edge and the cloud. Given that the shared data contain a large amount of private information, preserving information security on the shared data is an important issue that cannot be neglected. In this paper, we combine deep learning with homomorphic encryption algorithm and design a deep learning network model based on secure multiparty computing (MPC). In the whole process, we realize that the cloud only owns the encryption samples of users, and users do not own any parameters or structural information related to the model. In the experimental part, we input the encrypted Mnist and Cifar-10 datasets into the model for testing, and the results show that the classification accuracy rate of the encrypted Mnist can reach 99.21%, which is very close to the result under plaintext. The classification accuracy rate of encrypted Cifar-10 can reach 91.35%, slightly lower than the test result in plaintext and better than the existing deep learning network model that can realize data privacy protection.


IEEE Access ◽  
2018 ◽  
Vol 6 ◽  
pp. 51140-51150 ◽  
Author(s):  
Biao Jin ◽  
Dongshuo Jiang ◽  
Jinbo Xiong ◽  
Lei Chen ◽  
Qi Li

Author(s):  
Fanglan Zheng ◽  
Erihe ◽  
Kun Li ◽  
Jiang Tian ◽  
Xiaojia Xiang

In this paper, we propose a vertical federated learning (VFL) structure for logistic regression with bounded constraint for the traditional scorecard, namely FL-LRBC. Under the premise of data privacy protection, FL-LRBC enables multiple agencies to jointly obtain an optimized scorecard model in a single training session. It leads to the formation of scorecard model with positive coefficients to guarantee its desirable characteristics (e.g., interpretability and robustness), while the time-consuming parameter-tuning process can be avoided. Moreover, model performance in terms of both AUC and the Kolmogorov–Smirnov (KS) statistics is significantly improved by FL-LRBC, due to the feature enrichment in our algorithm architecture. Currently, FL-LRBC has already been applied to credit business in a China nation-wide financial holdings group.


2019 ◽  
Vol 42 (2) ◽  
Author(s):  
Alan Toy ◽  
Gehan Gunasekara

The data transfer model and the accountability model, which are the dominant models for protecting the data privacy rights of citizens, have begun to present significant difficulties in regulating the online and increasingly transnational business environment. Global organisations take advantage of forum selection clauses and choice of law clauses and attention is diverted toward the data transfer model and the accountability model as a means of data privacy protection but it is impossible to have confidence that the data privacy rights of citizens are adequately protected given well known revelations regarding surveillance and the rise of technologies such as cloud computing. But forum selection and choice of law clauses no longer have the force they once seemed to have and this opens the possibility that extraterritorial jurisdiction may provide a supplementary conceptual basis for championing data privacy in the globalised context of the Internet. This article examines the current basis for extraterritorial application of data privacy laws and suggests a test for increasing their relevance.


Author(s):  
Fritz Grupe ◽  
William Kuechler ◽  
Scott Sweeney

Author(s):  
Shenglong Liu ◽  
Hongbin Zhu ◽  
Tao Zhao ◽  
Heng Wang ◽  
Xianzhou Gao ◽  
...  

Author(s):  
Yang Jing ◽  
Ren Xiangmin ◽  
Zhang Jianpei ◽  
Wang Kechao

Sign in / Sign up

Export Citation Format

Share Document