scholarly journals Effect of thermal barrier coating on thermal load of the rotor of the small aviation wankel engine

2021 ◽  
Vol 2125 (1) ◽  
pp. 012064
Author(s):  
Zhenghao Yang ◽  
Guangyu He

Abstract Due to its high-altitude, low-temperature, high-load, and air-cooled working environment, small aviation rotary engines have problems such as large component load and low heat dissipation efficiency. As the main moving part of the engine, the rotor is continuously exposed to the complex temperature field of the engine. As an effective high-temperature protective coating, the thermal barrier coating can isolate the heat load generated by the work of the combustion chamber and effectively improve the complex work condition of the triangular rotor. This paper takes the triangular rotor of a small aviation Wankel engine as the research object, and establishes the finite element model of the rotor and the coating. The engine thermodynamic simulation model is established by Simulink, and the combustion chamber temperature and heat transfer coefficient are calculated. The heat transfer coefficients of the other surfaces of the rotor were calculated by series thermal resistance, which were used as boundary conditions for finite element analysis of the rotor and the coating. The temperature field, stress field and deformation of the rotor before and after processing the thermal barrier coating are compared. The results showed that after the thermal barrier coating, the temperature of the rotor will drop by about 50K on average. The temperature of the pit and cooling hole of the rotor will drop by 17K and 16K respectively, and the temperature of the inner edge and side end surface of the sealing groove will drop by about 10K. The stress values at the inner side of the rotor seal groove, the inner cavity cooling hole, and the inner hole of the rotor are reduced by about 35.4MPa, 29.4MPa, 33.4MPa, respectively, and the stress value at the bonding layer is 150MPa, which is significantly higher than the stress value at the corresponding position of the original rotor, indicating that there is stress Concentration phenomenon. At the same time, the deformation at both ends of the rotor seal groove is reduced from 61.92μm to 52.55μm, and the difference in the axial deformation of each position is less than 3mm. It can be obtained that the thermal barrier coating can effectively reduce the radial deformation of the rotor and has little effect on the axial deformation of the rotor.

2019 ◽  
Vol 45 (10) ◽  
pp. 12635-12642 ◽  
Author(s):  
Shiyu Cui ◽  
Qiang Miao ◽  
Joseph P. Domblesky ◽  
Wenping Liang ◽  
Youpeng Song

Author(s):  
Michael Marr ◽  
James S. Wallace ◽  
Larry Pershin ◽  
Sanjeev Chandra ◽  
Javad Mostaghimi

A novel metal-based thermal barrier coating was tested in a spark-ignition engine. The coating was applied to the surface of aluminum plugs and exposed to in-cylinder conditions through ports in the cylinder wall. Temperatures were measured directly behind the coating and within the plug 3 and 11 mm from the surface. In-cylinder pressures were measured and analyzed to identify and quantify knock. Test results suggest the coating does not significantly reduce overall heat transfer, but it does reduce the magnitude of temperature fluctuations at the substrate surface. It was found that heat transfer can be reduced by reducing the surface roughness of the coating. The presence of the coating did not promote knock.


Energies ◽  
2018 ◽  
Vol 11 (4) ◽  
pp. 1000 ◽  
Author(s):  
Prasert Prapamonthon ◽  
Soemsak Yooyen ◽  
Suwin Sleesongsom ◽  
Daniele Dipasquale ◽  
Huazhao Xu ◽  
...  

2006 ◽  
Vol 129 (3) ◽  
pp. 599-607 ◽  
Author(s):  
N. Sundaram ◽  
K. A. Thole

With the increase in usage of gas turbines for power generation and given that natural gas resources continue to be depleted, it has become increasingly important to search for alternate fuels. One source of alternate fuels is coal derived synthetic fuels. Coal derived fuels, however, contain traces of ash and other contaminants that can deposit on vane and turbine surfaces affecting their heat transfer through reduced film cooling. The endwall of a first stage vane is one such region that can be susceptible to depositions from these contaminants. This study uses a large-scale turbine vane cascade in which the following effects on film cooling adiabatic effectiveness were investigated in the endwall region: the effect of near-hole deposition, the effect of partial film cooling hole blockage, and the effect of spallation of a thermal barrier coating. The results indicated that deposits near the hole exit can sometimes improve the cooling effectiveness at the leading edge, but with increased deposition heights the cooling deteriorates. Partial hole blockage studies revealed that the cooling effectiveness deteriorates with increases in the number of blocked holes. Spallation studies showed that for a spalled endwall surface downstream of the leading edge cooling row, cooling effectiveness worsened with an increase in blowing ratio.


2009 ◽  
Vol 23 (4) ◽  
pp. 843-847 ◽  
Author(s):  
Dong Hyun Lee ◽  
Kyung Min Kim ◽  
Sangwoo Shin ◽  
Hyung Hee Cho

Sign in / Sign up

Export Citation Format

Share Document