Experimental and computational evaluation of a gas-solid suspension density distribution under circulating fluidized bed conditions
Abstract The paper presents the results of operational measurements of the suspension density distribution in the 966 MWth supercritical Circulating Fluidized Bed boiler. The tests were carried out for four different unit thermal loads, i.e. 40, 60, 80, and 100% MCR. The conducted operational measurements showed that the suspension density distribution of the particulate material in the combustion chamber of the CFB boiler has the form of an exponential curve with maximum values occurring in the bottom part of the furnace. On the basis of the operational data, an attempt was made to reflect the suspension density distribution in the combustion chamber of the boiler using the ANSYS CFD software. The calculations were carried out using the Eulerian multiphase model in an unsteady state condition. As revealed by the simulations, the Eulerian multiphase model allows for a quantitative representation of the suspension density distribution of the granular material only for the maximum boiler load. For other thermal loads, quantitative representation of experimental distributions of suspension density using the Eulerian method is possible except for the dense region.