scholarly journals Experimental Study of the Effect of Cavities on the Load Capacity of Two-Way Reinforced Concrete Plates on Fixed Concrete Thickness

2021 ◽  
Vol 921 (1) ◽  
pp. 012085
Author(s):  
W M T Atmadja ◽  
H Parung ◽  
R Irmawaty ◽  
A.A Amiruddin

Abstract The study aims to determine the effect of cavities on the load capacity of reinforced concrete slabs when compared to massive reinforced concrete slabs that have the same thickness, with the hope of reducing the structure’s weight and the use of concrete materials. The modified PVC pipes, as cavity formers, will be placed in the tensile area without reducing the flexural strength that is caused by the weak nature of concrete against tensile strength. The test is carried out on a full scale against 14 cm thick solid plates (PP-1), and hollow plates, which use modified PVC pipes (PB-2), with a cavity diameter of 7.6 cm that has the same thickness. The test uses joint supports on all four sides and the loading pattern is evenly distributed. All slabs are made, on the spot, of cast concrete with the same size and distance between the reinforcement. PVC hollow plate (PB-2) has the same effective thickness as solid plate but has 14% less concrete volume. The maximum load capacity on the solid plate (PP-1) is 522.66 kN and on the hollow plate (PB-2) is 444.33 kN. The melting capacity on the solid plate (PP-1) is 373,515 kN and on the hollow plate (PB-2) is 325,935 kN. Initial crack load capacity on the solid plate (PP-1) is 19.5 kN and on the hollow plate (PB-2) is 16.75 kN

Fibers ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 68
Author(s):  
Abdulkhaliq A. Jaafer ◽  
Raid AL-Shadidi ◽  
Saba L. Kareem

The present experimental work investigates the applicability and performance of a new strengthening method for concrete slabs, intended to increase their punching resistance using combination layers of steel wire mesh with epoxy attached to the concrete slabs’ tension face. Six simply supported square reinforced concrete slab specimens were tested up to failure under a central concentrated load. The main parameters in the study are the concrete compressive strength (30 MPa and 65 MPa) and the configuration of a bundle externally fixed to the tension side of the tested slabs. The experimental results appeared to greatly enhance the performance of the specimens, as they were externally strengthenined under this new method. When compared to the control slabs, the punching load and stiffness of the strengthened slabs increased up to 28% and 21%, respectively.


2019 ◽  
Vol 279 ◽  
pp. 02005
Author(s):  
Vladimir Alekhin ◽  
Alexander Budarin ◽  
Maxim Pletnev ◽  
Liubov Avdonina

The shear punching of the reinforced concrete slabs is a complex process occurring when considerable force is concentrated on the relatively small area of a column-slab connection. An incorrect assessment of load capacity of slab under the punching shear may lead to an accident. One of the most significant factors affecting the slab capacity is longitudinal reinforcement. In this article much attention is given to the analysis of the longitudinal rebar impact on the maximum loading capacity of reinforced concrete slabs without transverse reinforcement affected by punching shear force using the finite element method. The results obtained via the finite element simulation are compared with laboratory tests and manual calculations carried-out using various methods represented in different national building Codes of practice.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3616 ◽  
Author(s):  
Barbara Sadowska-Buraczewska ◽  
Małgorzata Szafraniec ◽  
Danuta Barnat-Hunek ◽  
Grzegorz Łagód

The paper presented aimed at examining the effect of a fiber-reinforced concrete layer in the compressed zone on the mechanical properties of composite fiber-reinforced concrete slabs. Steel fibers (SF) and polypropylene fibers (PP) in the amount of 1% in relation to the weight of the concrete mix were used as reinforcement fibers. The mixture compositions were developed for the reference concrete, steel fiber concrete and polypropylene fiber concrete. The mechanical properties of the concrete obtained from the designed mixes such as compressive strength, bending strength, modulus of elasticity and frost resistance were tested. The main research elements, i.e., slabs with a reinforced compression zone in the form of a 30 mm layer of concrete with PP or SF were made and tested. The results obtained were compared with a plate made without a strengthening layer. The bending resistance, load capacity and deflection tests were performed on the slabs. A scheme of crack development during the test and a numerical model for the slab element were also devised. The study showed that the composite slabs with fiber-reinforced concrete with PP in the upper layer achieved 12% higher load capacity, with respect to the reference slabs.


1997 ◽  
Vol 1 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Hong Guan ◽  
Yew-Chaye Loo

A nonlinear layered finite element procedure is presented for flexural and shear failure analysis of reinforced concrete slabs and flat plates. A degenerated shell element employing a layered discretization scheme is adopted. This provides a simple and effective means of accounting for the nonlinear behaviour of concrete and steel reinforcement over the thickness of the slab or flat plate. The procedure is capable of determining the load-deflection response, the ultimate load capacity and crack patterns of concrete slab structures, as well as computing the punching shear strength at slab-column connections of concrete flat plates. To verify the accuracy and reliability of the proposed method of analysis, comparative studies are carried out on a collection of reinforced concrete slabs, single slab-column connections and multi-column flat plates which were tested by other researchers. In general, good correlations are obtained with the published test results.


2019 ◽  
Vol 5 (3) ◽  
pp. 718
Author(s):  
Ali Faiq Hallawi ◽  
Ali Hussein Ali Al-Ahmed

This paper studies experimentally the behavior of laced reinforced concrete one-way slabs under monotonic load. The experimental program included testing three simply supported one-way slabs of dimensions (1500 mm length, 600 mm width, and thickness 130mm. One of these slabs was the control specimen which was designed without lacing reinforcement steel and the other two specimens designed were with two variable lacing reinforcement ratio (0.27% and 0.52%). All specimens were cast with normal of 22 MPa compressive strength. Specimens were tested under two equal line loads applied at the third parts of the slab (monotonic load) gradually applying up to failure. The specimens showed an enhanced in ultimate load capacity up to 40% as a result of increasing the lacing steel ratio to 0.52 %. Also, decreasing in deflection at service and at ultimate load levels by 42% and %57 respectively. In addition, the results showed that specimen with lacing reinforcement are more ductility than specimen without lacing reinforcement so using of lacing steel reinforcement leads to significant improvements in ductility index which reached to about 49% with increasing the lacing steel ratio to (0.52%).


Author(s):  
Rand Tariq Kanaan ◽  
Ali Hussein Ali Al-Ahmed

This paper studies the performance of two-way reinforced concrete slabs with different sizesand shapes of cavities numerically under uniform load. Nineteen simply supported slab models were modeled with dimensions of (1060 1060  70) mm. One of them wasthe reference model which was solid slab and the others were with different shapes, sizes and numbers of cavities.The slab models with cavities divided into three groupsaccording to the shape of the cavities, each group contained six slab models, first group contained slab models with square shape of cavities while the second group contained the models with diamond cavities and third group contained models with circular cavities.In each group there were different numbers of cavities (9, 16 and 25), and the thickness was either 2 cm or 4 cm. The numerical results show that, when the percentage reduction of models weight was (14 %) which is corresponding to the cavities thickness of (2 cm), for this case the ultimate load capacity reduced by (3.40 - 13.61)%. While when the percentage reduction in weight was (28 %) which is corresponding with the cavities thickness of (2 cm), the ultimate load capacity reduced by (14.97 - 24.49) %.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Radim Čajka ◽  
Zuzana Marcalíková

Abstract The presented article deals with experimental testing of fiber-reinforced concrete slabs using a specialized testing device, the so-called Stand. The experimental testing involved a total of three slabs with different fiber dosing. Dosing was chosen of 25, 50, and 75 kg/m3. In the case of fiber dosing of 75 kg/m3, the concrete recipe was changed with regard of fiber dosing. The test equipment allows vertical loading of the elements and, together with the installed track sensors and computer technology, records the vertical deformations. The deformation of the slabs was evaluated using 2D deformation sections in the slabs of mounted sensors and using 3D deformation sections with the use of interpolation of intermediate values. The article is supplemented by a test evaluation of the mechanical properties. These were concrete compressive strength, modulus of elasticity, and tensile strength. The mechanical properties were also tested and evaluated for plain concrete (dosage 0 kg/m3). By evaluating the mechanical properties and deformations, it is possible to observe differences in the behavior of fiber-reinforced concrete elements for different degrees of fiber reinforcement. The article evaluates the positive effect of fibers on the load capacity and the deformations of slabs.


Sign in / Sign up

Export Citation Format

Share Document