scholarly journals Physics makes the difference: Bayesian optimization and active learning via augmented Gaussian process

Author(s):  
Maxim Ziatdinov ◽  
Ayana Ghosh ◽  
Sergei V Kalinin

Abstract Both experimental and computational methods for the exploration of structure, functionality, and properties of materials often necessitate the search across broad parameter spaces to discover optimal experimental conditions and regions of interest in the image space or parameter space of computational models. The direct grid search of the parameter space tends to be extremely time-consuming, leading to the development of strategies balancing exploration of unknown parameter spaces and exploitation towards required performance metrics. However, classical Bayesian optimization strategies based on the Gaussian process (GP) do not readily allow for the incorporation of the known physical behaviors or past knowledge. Here we explore a hybrid optimization/exploration algorithm created by augmenting the standard GP with a structured probabilistic model of the expected system’s behavior. This approach balances the flexibility of the non-parametric GP approach with a rigid structure of physical knowledge encoded into the parametric model. The fully Bayesian treatment of the latter allows additional control over the optimization via the selection of priors for the model parameters. The method is demonstrated for a noisy version of the classical objective function used to evaluate optimization algorithms and further extended to physical lattice models. This methodology is expected to be universally suitable for injecting prior knowledge in the form of physical models and past data in the Bayesian optimization framework.

2020 ◽  
Vol 34 (11) ◽  
pp. 1813-1830
Author(s):  
Daniel Erdal ◽  
Sinan Xiao ◽  
Wolfgang Nowak ◽  
Olaf A. Cirpka

Abstract Ensemble-based uncertainty quantification and global sensitivity analysis of environmental models requires generating large ensembles of parameter-sets. This can already be difficult when analyzing moderately complex models based on partial differential equations because many parameter combinations cause an implausible model behavior even though the individual parameters are within plausible ranges. In this work, we apply Gaussian Process Emulators (GPE) as surrogate models in a sampling scheme. In an active-training phase of the surrogate model, we target the behavioral boundary of the parameter space before sampling this behavioral part of the parameter space more evenly by passive sampling. Active learning increases the subsequent sampling efficiency, but its additional costs pay off only for a sufficiently large sample size. We exemplify our idea with a catchment-scale subsurface flow model with uncertain material properties, boundary conditions, and geometric descriptors of the geological structure. We then perform a global-sensitivity analysis of the resulting behavioral dataset using the active-subspace method, which requires approximating the local sensitivities of the target quantity with respect to all parameters at all sampled locations in parameter space. The Gaussian Process Emulator implicitly provides an analytical expression for this gradient, thus improving the accuracy of the active-subspace construction. When applying the GPE-based preselection, 70–90% of the samples were confirmed to be behavioral by running the full model, whereas only 0.5% of the samples were behavioral in standard Monte-Carlo sampling without preselection. The GPE method also provided local sensitivities at minimal additional costs.


2021 ◽  
Author(s):  
Ludwig Danwitz ◽  
David Mathar ◽  
Elke Smith ◽  
Deniz Tuzsus ◽  
Jan Peters

Multi-armed restless bandit tasks are regularly applied in psychology and cognitive neuroscience to assess exploration and exploitation behavior in structured environments. These models are also readily applied to examine effects of (virtual) brain lesions on performance, and to infer neurocomputational mechanisms using neuroimaging or pharmacological approaches. However, to infer individual, psychologically meaningful parameters from such data, computational cognitive modeling is typically applied. Recent studies indicate that softmax (SM) decision rule models that include a representation of environmental dynamics (e.g. the Kalman Filter) and additional parameters for modeling exploration and perseveration (Kalman SMEP) fit human bandit task data better than competing models. Parameter and model recovery are two central requirements for computational models: parameter recovery refers to the ability to recover true data-generating parameters; model recovery refers to the ability to correctly identify the true data generating model using model comparison techniques. Here we comprehensively examined parameter and model recovery of the Kalman SMEP model as well as nested model versions, i.e. models without the additional parameters, using simulation and Bayesian inference. Parameter recovery improved with increasing trial numbers, from around .8 for 100 trials to around .93 for 300 trials. Model recovery analyses likewise confirmed acceptable recovery of the Kalman SMEP model. Model recovery was lower for nested Kalman filter models as well as delta rule models with fixed learning rates. Exploratory analyses examined associations of model parameters with model-free performance metrics. Random exploration, captured by the inverse softmax temperature, was associated with lower accuracy and more switches. For the exploration bonus parameter modeling directed exploration, we confirmed an inverse- U-shaped association with accuracy, such that both an excess and a lack of directed exploration reduced accuracy. Taken together, these analyses underline that the Kalman SMEP model fulfills basic requirements of a cognitive model.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
Sascha Caron ◽  
Tom Heskes ◽  
Sydney Otten ◽  
Bob Stienen

AbstractConstraining the parameters of physical models with $$>5-10$$>5-10 parameters is a widespread problem in fields like particle physics and astronomy. The generation of data to explore this parameter space often requires large amounts of computational resources. The commonly used solution of reducing the number of relevant physical parameters hampers the generality of the results. In this paper we show that this problem can be alleviated by the use of active learning. We illustrate this with examples from high energy physics, a field where simulations are often expensive and parameter spaces are high-dimensional. We show that the active learning techniques query-by-committee and query-by-dropout-committee allow for the identification of model points in interesting regions of high-dimensional parameter spaces (e.g. around decision boundaries). This makes it possible to constrain model parameters more efficiently than is currently done with the most common sampling algorithms and to train better performing machine learning models on the same amount of data. Code implementing the experiments in this paper can be found on GitHub "Image missing"


2021 ◽  
Author(s):  
Bethany Stieve ◽  
Thomas Richner ◽  
Chris Krook-Magnuson ◽  
Theoden Netoff ◽  
Esther Krook-Magnuson

Additional treatment options for temporal lobe epilepsy are needed, and potential interventions targeting the cerebellum are of interest. Previous animal work has shown strong inhibition of hippocampal seizures through on-demand optogenetic manipulation of the cerebellum. However, decades of work examining electrical stimulation - a more immediately translatable approach - targeting the cerebellum has produced very mixed results. We were therefore interested in exploring the impact that stimulation parameters may have on seizure outcomes. Using a mouse model of temporal lobe epilepsy, we conducted on-demand electrical stimulation of the cerebellar cortex, and varied stimulation charge, frequency, and pulse width, resulting in over a thousand different potential combinations of settings. To explore this parameter space in an efficient, data-driven, manner, we utilized Bayesian optimization with Gaussian process regression, implemented in Matlab with an Expected Improvement Plus acquisition function. We examined two different fitting conditions and two different electrode orientations. Following the optimization process, we conducted additional on-demand experiments to test the effectiveness of selected settings. Across all animals, we found that Bayesian optimization allowed identification of effective intervention settings. Additionally, generally similar optimal settings were identified across animals, suggesting that personalized optimization may not always be necessary. While optimal settings were consistently effective, stimulation with settings predicted from the Gaussian process regression to be ineffective failed to provide seizure control. Taken together, our results provide a blueprint for exploration of a large parameter space for seizure control, and illustrate that robust inhibition of seizures can be achieved with electrical stimulation of the cerebellum, but only if the correct stimulation parameters are used.


2020 ◽  
Vol 4 (8) ◽  
Author(s):  
Shion Takeno ◽  
Yuhki Tsukada ◽  
Hitoshi Fukuoka ◽  
Toshiyuki Koyama ◽  
Motoki Shiga ◽  
...  

2021 ◽  
Author(s):  
Tamsin Edwards ◽  

<p><strong>The land ice contribution to global mean sea level rise has not yet been predicted with ice sheet and glacier models for the latest set of socio-economic scenarios (SSPs), nor with coordinated exploration of uncertainties arising from the various computer models involved. Two recent international projects (ISMIP6 and GlacierMIP) generated a large suite of projections using multiple models, but mostly used previous generation scenarios and climate models, and could not fully explore known uncertainties. </strong></p><p><strong>Here we estimate probability distributions for these projections for the SSPs using Gaussian Process emulation of the ice sheet and glacier model ensembles. We model the sea level contribution as a function of global mean surface air temperature forcing and (for the ice sheets) model parameters, with the 'nugget' allowing for multi-model structural uncertainty. Approximate independence of ice sheet and glacier models is assumed, because a given model responds very differently under different setups (such as initialisation). </strong></p><p><strong>We find that limiting global warming to 1.5</strong>°<strong>C </strong><strong>would halve the land ice contribution to 21<sup>st</sup> century </strong><strong>sea level rise</strong><strong>, relative to current emissions pledges: t</strong><strong>he median decreases from 25 to 13 cm sea level equivalent (SLE) by 2100. However, the Antarctic contribution does not show a clear response to emissions scenario, due to competing processes of increasing ice loss and snowfall accumulation in a warming climate. </strong></p><p><strong>However, under risk-averse (pessimistic) assumptions for climate and Antarctic ice sheet model selection and ice sheet model parameter values, Antarctic ice loss could be five times higher, increasing the median land ice contribution to 42 cm SLE under current policies and pledges, with the 95<sup>th</sup> percentile exceeding half a metre even under 1.5</strong>°<strong>C warming. </strong></p><p><strong>Gaussian Process emulation can therefore be a powerful tool for estimating probability density functions from multi-model ensembles and testing the sensitivity of the results to assumptions.</strong></p>


Author(s):  
Shunki Nishii ◽  
Yudai Yamasaki

Abstract To achieve high thermal efficiency and low emission in automobile engines, advanced combustion technologies using compression autoignition of premixtures have been studied, and model-based control has attracted attention for their practical applications. Although simplified physical models have been developed for model-based control, appropriate values for their model parameters vary depending on the operating conditions, the engine driving environment, and the engine aging. Herein, we studied an onboard adaptation method of model parameters in a heat release rate (HRR) model. This method adapts the model parameters using neural networks (NNs) considering the operating conditions and can respond to the driving environment and the engine aging by training the NNs onboard. Detailed studies were conducted regarding the training methods. Furthermore, the effectiveness of this adaptation method was confirmed by evaluating the prediction accuracy of the HRR model and model-based control experiments.


Author(s):  
Arunabha Batabyal ◽  
Sugrim Sagar ◽  
Jian Zhang ◽  
Tejesh Dube ◽  
Xuehui Yang ◽  
...  

Abstract A persistent problem in the selective laser sintering process is to maintain the quality of additively manufactured parts, which can be attributed to the various sources of uncertainty. In this work, a two-particle phase-field microstructure model has been analyzed. The sources of uncertainty as the two input parameters were surface diffusivity and inter-particle distance. The response quantity of interest (QOI) was selected as the size of the neck region that develops between the two particles. Two different cases with equal and unequal sized particles were studied. It was observed that the neck size increased with increasing surface diffusivity and decreased with increasing inter-particle distance irrespective of particle size. Sensitivity analysis found that the inter-particle distance has more influence on variation in neck size than that of surface diffusivity. The machine learning algorithm Gaussian Process Regression was used to create the surrogate model of the QOI. Bayesian Optimization method was used to find optimal values of the input parameters. For equal-sized particles, optimization using Probability of Improvement provided optimal values of surface diffusivity and inter-particle distance as 23.8268 and 40.0001, respectively. The Expected Improvement as an acquisition function gave optimal values 23.9874 and 40.7428, respectively. For unequal sized particles, optimal design values from Probability of Improvement were 23.9700 and 33.3005, respectively, while those from Expected Improvement were 23.9893 and 33.9627, respectively. The optimization results from the two different acquisition functions seemed to be in good agreement.


2009 ◽  
Vol 13 (6) ◽  
pp. 893-904 ◽  
Author(s):  
N. Bulygina ◽  
N. McIntyre ◽  
H. Wheater

Abstract. Data scarcity and model over-parameterisation, leading to model equifinality and large prediction uncertainty, are common barriers to effective hydrological modelling. The problem can be alleviated by constraining the prior parameter space using parameter regionalisation. A common basis for regionalisation in the UK is the HOST database which provides estimates of hydrological indices for different soil classifications. In our study, Base Flow Index is estimated from the HOST database and the power of this index for constraining the parameter space is explored. The method is applied to a highly discretised distributed model of a 12.5 km2 upland catchment in Wales. To assess probabilistic predictions against flow observations, a probabilistic version of the Nash-Sutcliffe efficiency is derived. For six flow gauges with reliable data, this efficiency ranged between 0.70 and 0.81, and inspection of the results shows that the model explains the data well. Knowledge of how Base Flow Index and interception losses may change under future land use management interventions was then used to further condition the model. Two interventions are considered: afforestation of grazed areas, and soil degradation associated with increased grazing intensity. Afforestation leads to median reduction in modelled runoff volume of 24% over the simulated 3 month period; and a median peak flow reduction ranging from 12 to 15% over the six gauges for the largest simulated event. Uncertainty in all results is low compared to prior uncertainty and it is concluded that using Base Flow Index estimated from HOST is a simple and potentially powerful method of conditioning the parameter space under current and future land management.


Author(s):  
Feng Zhou ◽  
Jianxin (Roger) Jiao

Traditional user experience (UX) models are mostly qualitative in terms of its measurement and structure. This paper proposes a quantitative UX model based on cumulative prospect theory. It takes a decision making perspective between two alternative design profiles. However, affective elements are well-known to have influence on human decision making, the prevailing computational models for analyzing and simulating human perception on UX are mainly cognition-based models. In order to incorporate both affective and cognitive factors in the decision making process, we manipulate the parameters involved in the cumulative prospect model to show the affective influence. Specifically, three different affective states are induced to shape the model parameters. A hierarchical Bayesian model with a technique called Markov chain Monte Carlo is used to estimate the parameters. A case study of aircraft cabin interior design is illustrated to show the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document