scholarly journals BIOLOGICAL DAMAGE IN MATURE AND IMMATURE GERM CELLS OF DROSOPHILA VIRILIS WITH IONIZING RADIATIONS

Genetics ◽  
1959 ◽  
Vol 44 (6) ◽  
pp. 979-999
Author(s):  
Mary L Alexander ◽  
Janet Bergendahl ◽  
Madeleine Brittain
2021 ◽  
Vol 23 (1) ◽  
pp. 396
Author(s):  
Janusz M. Gebicki ◽  
Thomas Nauser

Ionizing radiations cause chemical damage to proteins. In aerobic aqueous solutions, the damage is commonly mediated by the hydroxyl free radicals generated from water, resulting in formation of protein radicals. Protein damage is especially significant in biological systems, because proteins are the most abundant targets of the radiation-generated radicals, the hydroxyl radical-protein reaction is fast, and the damage usually results in loss of their biological function. Under physiological conditions, proteins are initially oxidized to carbon-centered radicals, which can propagate the damage to other molecules. The most effective endogenous antioxidants, ascorbate, GSH, and urate, are unable to prevent all of the damage under the common condition of oxidative stress. In a promising development, recent work demonstrates the potential of polyphenols, their metabolites, and other aromatic compounds to repair protein radicals by the fast formation of less damaging radical adducts, thus potentially preventing the formation of a cascade of new reactive species.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Sign in / Sign up

Export Citation Format

Share Document