scholarly journals Powerful, efficient QTL mapping in Drosophila melanogaster using bulked phenotyping and pooled sequencing

Genetics ◽  
2022 ◽  
Author(s):  
Stuart J Macdonald ◽  
Kristen M Cloud-Richardson ◽  
Dylan J Sims-West ◽  
Anthony D Long

Abstract Despite the value of Recombinant Inbred Lines (RILs) for the dissection of complex traits, large panels can be difficult to maintain, distribute, and phenotype. An attractive alternative to RILs for many traits leverages selecting phenotypically extreme individuals from a segregating population, and subjecting pools of selected and control individuals to sequencing. Under a bulked or extreme segregant analysis paradigm, genomic regions contributing to trait variation are revealed as frequency differences between pools. Here we describe such an extreme quantitative trait locus, or X-QTL, mapping strategy that builds on an existing multiparental population, the DSPR (Drosophila Synthetic Population Resource), and involves phenotyping and genotyping a population derived by mixing hundreds of DSPR RILs. Simulations demonstrate that challenging, yet experimentally tractable X-QTL designs ( > =4 replicates, > =5000 individuals/replicate, and selecting the 5-10% most extreme animals) yield at least the same power as traditional RIL-based QTL mapping and can localize variants with sub-centimorgan resolution. We empirically demonstrate the effectiveness of the approach using a 4-fold replicated X-QTL experiment that identifies 7 QTL for caffeine resistance. Two mapped X-QTL factors replicate loci previously identified in RILs, 6/7 are associated with excellent candidate genes, and RNAi knock-downs support the involvement of 4 genes in the genetic control of trait variation. For many traits of interest to drosophilists, a bulked phenotyping/genotyping X-QTL design has considerable advantages.

2021 ◽  
Author(s):  
Stuart J Macdonald ◽  
Kristen M Cloud-Richardson ◽  
Dylan J Sims-West ◽  
Anthony D Long

Despite the value of Recombinant Inbred Lines (RILs) for the dissection of complex traits, large panels can be difficult to maintain, distribute, and phenotype. An attractive alternative to RILs for many traits leverages selecting phenotypically-extreme individuals from a segregating population, and subjecting pools of selected and control individuals to sequencing. Under a bulked or extreme segregant analysis paradigm, genomic regions contributing to trait variation are revealed as frequency differences between pools. Here we describe such an extreme quantitative trait locus, or X-QTL mapping strategy that builds on an existing multiparental population, the DSPR (Drosophila Synthetic Population Resource), and involves phenotyping and genotyping a population derived by mixing hundreds of DSPR RILs. Simulations demonstrate that challenging, yet experimentally tractable X-QTL designs (>=4 replicates, >=5000 individuals/replicate, and a selection intensity of 5-10%) yield at least the same power as traditional RIL-based QTL mapping, and can localize variants with sub-centimorgan resolution. We empirically demonstrate the effectiveness of the approach using a 4-fold replicated X-QTL experiment that identifies 7 QTL for caffeine resistance. Two mapped X-QTL factors replicate loci previously identified in RILs, 6/7 are associated with excellent candidate genes, and RNAi knock-downs support the involvement of 4 genes in the genetic control of trait variation. For many traits of interest to drosophilists a bulked phenotyping/genotyping X-QTL design has considerable advantages.


2011 ◽  
Vol 7 (6) ◽  
pp. 896-898 ◽  
Author(s):  
Alison G. Scoville ◽  
Young Wha Lee ◽  
John H. Willis ◽  
John K. Kelly

Most natural populations display substantial genetic variation in behaviour, morphology, physiology, life history and the susceptibility to disease. A major challenge is to determine the contributions of individual loci to variation in complex traits. Quantitative trait locus (QTL) mapping has identified genomic regions affecting ecologically significant traits of many species. In nearly all cases, however, the importance of these QTLs to population variation remains unclear. In this paper, we apply a novel experimental method to parse the genetic variance of floral traits of the annual plant Mimulus guttatus into contributions of individual QTLs. We first use QTL-mapping to identify nine loci and then conduct a population-based breeding experiment to estimate V Q , the genetic variance attributable to each QTL. We find that three QTLs with moderate effects explain up to one-third of the genetic variance in the natural population. Variation at these loci is probably maintained by some form of balancing selection. Notably, the largest effect QTLs were relatively minor in their contribution to heritability.


2014 ◽  
Vol 46 (3) ◽  
pp. 81-90 ◽  
Author(s):  
Leah C. Solberg Woods

Quantitative trait locus (QTL) mapping in animal populations has been a successful strategy for identifying genomic regions that play a role in complex diseases and traits. When conducted in an F2 intercross or backcross population, the resulting QTL is frequently large, often encompassing 30 Mb or more and containing hundreds of genes. To narrow the locus and identify candidate genes, additional strategies are needed. Congenic strains have proven useful but work less well when there are multiple tightly linked loci, frequently resulting in loss of phenotype. As an alternative, we discuss the use of highly recombinant outbred models for directly fine-mapping QTL to only a few megabases. We discuss the use of several currently available models such as the advanced intercross (AI), heterogeneous stocks (HS), the diversity outbred (DO), and commercially available outbred stocks (CO). Once a QTL has been fine-mapped, founder sequence and expression QTL mapping can be used to identify candidate genes. In this regard, the large number of alleles found in outbred stocks can be leveraged to identify causative genes and variants. We end this review by discussing some important statistical considerations when analyzing outbred populations. Fine-resolution mapping in outbred models, coupled with full genome sequence, has already led to the identification of several underlying causative genes for many complex traits and diseases. These resources will likely lead to additional successes in the coming years.


2021 ◽  
Author(s):  
Alex N. Nguyen Ba ◽  
Katherine R. Lawrence ◽  
Artur Rego-Costa ◽  
Shreyas Gopalakrishnan ◽  
Daniel Temko ◽  
...  

Mapping the genetic basis of complex traits is critical to uncovering the biological mechanisms that underlie disease and other phenotypes. Genome-wide association studies (GWAS) in humans and quantitative trait locus (QTL) mapping in model organisms can now explain much of the observed heritability in many traits, allowing us to predict phenotype from genotype. However, constraints on power due to statistical confounders in large GWAS and smaller sample sizes in QTL studies still limit our ability to resolve numerous small-effect variants, map them to causal genes, identify pleiotropic effects across multiple traits, and infer non-additive interactions between loci (epistasis). Here, we introduce barcoded bulk quantitative trait locus (BB-QTL) mapping, which allows us to construct, genotype, and phenotype 100,000 offspring of a budding yeast cross, two orders of magnitude larger than the previous state of the art. We use this panel to map the genetic basis of eighteen complex traits, finding that the genetic architecture of these traits involves hundreds of small-effect loci densely spaced throughout the genome, many with widespread pleiotropic effects across multiple traits. Epistasis plays a central role, with thousands of interactions that provide insight into genetic networks. By dramatically increasing sample size, BB-QTL mapping demonstrates the potential of natural variants in high-powered QTL studies to reveal the highly polygenic, pleiotropic, and epistatic architecture of complex traits.Significance statementUnderstanding the genetic basis of important phenotypes is a central goal of genetics. However, the highly polygenic architectures of complex traits inferred by large-scale genome-wide association studies (GWAS) in humans stand in contrast to the results of quantitative trait locus (QTL) mapping studies in model organisms. Here, we use a barcoding approach to conduct QTL mapping in budding yeast at a scale two orders of magnitude larger than the previous state of the art. The resulting increase in power reveals the polygenic nature of complex traits in yeast, and offers insight into widespread patterns of pleiotropy and epistasis. Our data and analysis methods offer opportunities for future work in systems biology, and have implications for large-scale GWAS in human populations.


2019 ◽  
Vol 157 (9-10) ◽  
pp. 659-675 ◽  
Author(s):  
Xiyu Li ◽  
Hong Xue ◽  
Kaixin Zhang ◽  
Wenbin Li ◽  
Yanlong Fang ◽  
...  

AbstractProtein content (PC) and oil content (OC) are important breeding traits of soybean [Glycine max (L.) Merr.]. Quantitative trait locus (QTL) mapping for PC and OC is important for molecular breeding in soybean; however, the negative correlation between PC and OC influences the accuracy of QTL mapping. In the current study, a four-way recombinant inbred lines (FW-RILs) population comprising 160 lines derived from the cross (Kenfeng14 × Kenfeng15) × (Heinong48 × Kenfeng19) was planted in eight different environments and PC and OC measured. Conditional and unconditional QTL analyses were carried out by interval mapping (IM) and inclusive complete IM based on linkage maps of 275 simple sequences repeat markers in a FW-RILs population. This analysis revealed 59 unconditional QTLs and 52 conditional QTLs among the FW-RILs. An analysis of additive effects indicated that the effects of 13 protein QTLs were not related to OC, whereas OC affected the expression of 13 and eight QTLs either partially or completely, respectively. Eight QTLs affecting OC were not influenced by PC, whereas six and 26 QTLs were partially and fully affected by PC, respectively. Among the QTLs detected in the current study, two protein QTLs and five oil QTLs had not been previously reported. These findings will facilitate marker-assisted selection and molecular breeding of soybean.


2021 ◽  
Author(s):  
Noemie Valenza-Troubat ◽  
Sara Montanari ◽  
Peter Ritchie ◽  
Maren Wellenreuther

AbstractGrowth directly influences production rate and therefore is one of the most important and well-studied trait in animal breeding. However, understanding the genetic basis of growth has been hindered by its typically complex polygenic architecture. Here, we performed quantitative trait locus (QTL) mapping and genome-wide association studies (GWAS) for 10 growth traits that were observed over two years in 1,100 F1 captive-bred trevally (Pseudocaranx georgianus). We constructed the first high-density linkage map for trevally, which included 19,861 single nucleotide polymorphism (SNP) markers, and discovered eight QTLs for height, length and weight on linkage groups 3, 14 and 18. Using GWAS, we further identified 113 SNP-trait associations, uncovering 10 genetic hot spots involved in growth. Two of the markers found in the GWAS co-located with the QTLs previously mentioned, demonstrating that combining QTL mapping and GWAS represents a powerful approach for the identification and validation of loci controlling complex traits. This is the first study of its kind for trevally. Our findings provide important insights into the genetic architecture of growth in this species and supply a basis for fine mapping QTLs, marker-assisted selection, and further detailed functional analysis of the genes underlying growth in trevally.


2019 ◽  
Author(s):  
Yang Wu ◽  
Ting Qi ◽  
Huanwei Wang ◽  
Futao Zhang ◽  
Zhili Zheng ◽  
...  

AbstractPromoter-anchored chromatin interactions (PAIs) play a pivotal role in transcriptional regulation. Current high-throughput technologies for detecting PAIs, such as promoter capture Hi-C, are not scalable to large cohorts. Here, we present an analytical approach that uses summary-level data from cohort-based DNA methylation (DNAm) quantitative trait locus (mQTL) studies to predict PAIs. Using mQTL data from human peripheral blood (n=1,980), we predicted 34,797 PAIs which showed strong overlap with the chromatin contacts identified by previous experimental assays. The promoter-interacting DNAm sites were enriched in enhancers or near expression QTLs. Genes whose promoters were involved in PAIs were more actively expressed, and gene pairs with promoter-promoter interactions were enriched for co-expression. Integration of the predicted PAIs with GWAS data highlighted interactions among 601 DNAm sites associated with 15 complex traits. This study demonstrates the use of mQTL data to predict PAIs and provides insights into the role of PAIs in complex trait variation.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7008
Author(s):  
Nating Wang ◽  
Tinyi Chu ◽  
Jiangtao Luo ◽  
Rongling Wu ◽  
Zhong Wang

Quantitative trait locus (QTL) mapping has been used as a powerful tool for inferring the complexity of the genetic architecture that underlies phenotypic traits. This approach has shown its unique power to map the developmental genetic architecture of complex traits by implementing longitudinal data analysis. Here, we introduce the R package Funmap2 based on the functional mapping framework, which integrates prior biological knowledge into the statistical model. Specifically, the functional mapping framework is engineered to include longitudinal curves that describe the genetic effects and the covariance matrix of the trait of interest. Funmap2 chooses the type of longitudinal curve and covariance matrix automatically using information criteria. Funmap2 is available for download at https://github.com/wzhy2000/Funmap2.


Author(s):  
Parvin Shahrestani ◽  
Elizabeth King ◽  
Reza Ramezan ◽  
Mark Phillips ◽  
Melissa Riddle ◽  
...  

Abstract Little is known about the genetic architecture of antifungal immunity in natural populations. Using two population genetic approaches, Quantitative Trait Locus (QTL) Mapping and Evolve and Resequence (E&R), we explored D. melanogaster immune defense against infection with the fungus Beauveria bassiana. Immune defense was highly variable both in the recombinant inbred lines from the Drosophila Synthetic Population Resource used for our QTL mapping and in the synthetic outbred populations used in our E&R study. Survivorship of infection improved dramatically over just 10 generations in the E&R study, and continued to increase for an additional 9 generations, revealing a trade-off with uninfected longevity. Populations selected for increased defense against B. bassiana evolved cross resistance to a second, distinct B. bassiana strain but not to bacterial pathogens. The QTL mapping study revealed that sexual dimorphism in defense depends on host genotype, and the E&R study indicated that sexual dimorphism also depends on the specific pathogen to which the host is exposed. Both the QTL mapping and E&R experiments generated lists of potentially causal candidate genes, although these lists were non-overlapping.


2021 ◽  
Vol 12 ◽  
Author(s):  
Heng Chen ◽  
Xiangwen Pan ◽  
Feifei Wang ◽  
Changkai Liu ◽  
Xue Wang ◽  
...  

Isoflavone, protein, and oil are the most important quality traits in soybean. Since these phenotypes are typically quantitative traits, quantitative trait locus (QTL) mapping has been an efficient way to clarify their complex and unclear genetic background. However, the low-density genetic map and the absence of QTL integration limited the accurate and efficient QTL mapping in previous researches. This paper adopted a recombinant inbred lines (RIL) population derived from ‘Zhongdou27’and ‘Hefeng25’ and a high-density linkage map based on whole-genome resequencing to map novel QTL and used meta-analysis methods to integrate the stable and consentaneous QTL. The candidate genes were obtained from gene functional annotation and expression analysis based on the public database. A total of 41 QTL with a high logarithm of odd (LOD) scores were identified through composite interval mapping (CIM), including 38 novel QTL and 2 Stable QTL. A total of 660 candidate genes were predicted according to the results of the gene annotation and public transcriptome data. A total of 212 meta-QTL containing 122 stable and consentaneous QTL were mapped based on 1,034 QTL collected from previous studies. For the first time, 70 meta-QTL associated with isoflavones were mapped in this study. Meanwhile, 69 and 73 meta-QTL, respectively, related to oil and protein were obtained as well. The results promote the understanding of the biosynthesis and regulation of isoflavones, protein, and oil at molecular levels, and facilitate the construction of molecular modular for great quality traits in soybean.


Sign in / Sign up

Export Citation Format

Share Document