Regulous Functions over Real Closed Fields

Author(s):  
Wojciech Kucharz ◽  
Krzysztof Kurdyka

Abstract Let $X$ be a quasi-projective algebraic variety over a real closed field $R$, and let $f \colon U \to R$ be a function defined on an open subset $U$ of the set $X(R)$ of $R$-rational points of $X$. Assume that either the function $f$ is locally semialgebraic or the field $R$ is uncountable. If for every irreducible algebraic curve $C \subset X$ the restriction $f|_{U \cap C}$ is continuous and admits a rational representation, then $f$ is continuous and admits a rational representation. There are also suitable versions of this theorem with algebraic curves replaced by algebraic arcs. Heretofore, results of such a type have been known only for $R={\mathbb{R}}$. The transition from ${\mathbb{R}}$ to $R$ is not automatic at all and requires new methods.

2004 ◽  
Vol 77 (1) ◽  
pp. 123-128 ◽  
Author(s):  
W. D. Munn

AbstractIt is shown that the following conditions on a finite-dimensional algebra A over a real closed field or an algebraically closed field of characteristic zero are equivalent: (i) A admits a special involution, in the sense of Easdown and Munn, (ii) A admits a proper involution, (iii) A is semisimple.


2012 ◽  
Vol 11 (05) ◽  
pp. 1250088
Author(s):  
RICCARDO GHILONI

In this paper, we prove that the rings of quaternions and of octonions over an arbitrary real closed field are algebraically closed in the sense of Eilenberg and Niven. As a consequence, we infer that some reasonable algebraic closure conditions, including the one of Eilenberg and Niven, are equivalent on the class of centrally finite alternative division rings. Furthermore, we classify centrally finite alternative division rings satisfying such equivalent algebraic closure conditions: up to isomorphism, they are either the algebraically closed fields or the rings of quaternions over real closed fields or the rings of octonions over real closed fields.


1984 ◽  
Vol 49 (2) ◽  
pp. 625-629 ◽  
Author(s):  
Lou van den Dries

(1.1) A well-known example of a theory with built-in Skolem functions is (first-order) Peano arithmetic (or rather a certain definitional extension of it). See [C-K, pp. 143, 162] for the notion of a theory with built-in Skolem functions, and for a treatment of the example just mentioned. This property of Peano arithmetic obviously comes from the fact that in each nonempty definable subset of a model we can definably choose an element, namely, its least member.(1.2) Consider now a real closed field R and a nonempty subset D of R which is definable (with parameters) in R. Again we can definably choose an element of D, as follows: D is a union of finitely many singletons and intervals (a, b) where – ∞ ≤ a < b ≤ + ∞; if D has a least element we choose that element; if not, D contains an interval (a, b) for which a ∈ R ∪ { − ∞}is minimal; for this a we choose b ∈ R ∪ {∞} maximal such that (a, b) ⊂ D. Four cases have to be distinguished:(i) a = − ∞ and b = + ∞; then we choose 0;(ii) a = − ∞ and b ∈ R; then we choose b − 1;(iii) a ∈ R and b ∈ = + ∞; then we choose a + 1;(iv) a ∈ R and b ∈ R; then we choose the midpoint (a + b)/2.It follows as in the case of Peano arithmetic that the theory RCF of real closed fields has a definitional extension with built-in Skolem functions.


1975 ◽  
Vol 78 (2) ◽  
pp. 283-292 ◽  
Author(s):  
Herbert Lange

Let ℳg be the coarse moduli scheme of curves of genus g. For an algebraically closed field k define is a quasiprojective algebraic variety over k, its dimension being 3g – 3 for g ≥ 2, 1 for g = 1, and 0 for g = 0. It can be considered as the moduli variety for the classes of birationally equivalent curves of genus g over k. For 0 < g, g′ and n ≥ 1 let be the subset of those points of whose corresponding curves possess a rational map of degree n into a curve of genus g′ over k.


2021 ◽  
Vol 13 ◽  
Author(s):  
Merlin Carl ◽  
Lothar Sebastian Krapp

Exploring further the connection between exponentiation on real closed fields and the existence of an integer part modelling strong fragments of arithmetic, we demonstrate that each model of true arithmetic is an integer part of an exponential real closed field that is elementarily equivalent to the real numbers with exponentiation and that each model of Peano arithmetic is an integer part of a real closed field that admits an isomorphism between its ordered additive and its ordered multiplicative group of positive elements. Under the assumption of Schanuel’s Conjecture, we obtain further strengthenings for the last statement.


1992 ◽  
Vol 35 (4) ◽  
pp. 503-509
Author(s):  
W. Kucharz

AbstractLet X be a projective nonsingular variety over a real closed field R such that the set X(R) of R-rational points of X is nonempty. Let ClR(X) = Cl(X)/Γ(X), where Cl(X) is the group of classes of linearly equivalent divisors on X and Γ(X) is the subgroup of Cl(X) consisting of the classes of divisors whose restriction to some neighborhood of X(R) in X is linearly equivalent to 0. It is proved that the group ClR(X) is isomorphic to (Z/2)s for some non-negative integer s. Moreover, an upper bound on s is given in terms of the Z/2-dimension of the group cohomology modules of Gal(C/R), where , with values in the Néron-Severi group and the Picard variety of Xc = X xR C.


2005 ◽  
Vol 70 (1) ◽  
pp. 319-330 ◽  
Author(s):  
Alexander Raichev

AbstractWe show that for any real number, the class of real numbers less random than it, in the sense of rK-reducibility, forms a countable real closed subfield of the real ordered field. This generalizes the well-known fact that the computable reals form a real closed field.With the same technique we show that the class of differences of computably enumerable reals (d.c.e. reals) and the class of computably approximable reals (c.a. reals) form real closed fields. The d.c.e. result was also proved nearly simultaneously and independently by Ng (Keng Meng Ng, Master's Thesis, National University of Singapore, in preparation).Lastly, we show that the class of d.c.e. reals is properly contained in the class or reals less random than Ω (the halting probability), which in turn is properly contained in the class of c.a. reals, and that neither the first nor last class is a randomness class (as captured by rK-reducibility).


2001 ◽  
Vol 70 (1) ◽  
pp. 134-142 ◽  
Author(s):  
E. Bujalance ◽  
G. Gromadzki ◽  
M. Izquierdo

AbstractTwo projective nonsingular complex algebraic curves X and Y defined over the field R of real numbers can be isomorphic while their sets X(R) and Y(R) of R-rational points could be even non homeomorphic. This leads to the count of the number of real forms of a complex algebraic curve X, that is, those nonisomorphic real algebraic curves whose complexifications are isomorphic to X. In this paper we compute, as a function of genus, the maximum number of such real forms that a complex algebraic curve admits.


1998 ◽  
Vol 63 (2) ◽  
pp. 739-743 ◽  
Author(s):  
Deirdre Haskell ◽  
Dugald Macpherson

In this note, we consider models of the theories of valued algebraically closed fields and convexly valued real closed fields, their reducts to the pure field or ordered field language respectively, and expansions of these by predicates which are definable in the valued field. We show that, in terms of definability, there is no structure properly between the pure (ordered) field and the valued field. Our results are analogous to several other definability results for reducts of algebraically closed and real closed fields; see [9], [10], [11] and [12]. Throughout this paper, definable will mean definable with parameters.Theorem A. Let ℱ = (F, +, ×, V) be a valued, algebraically closed field, where V denotes the valuation ring. Let A be a subset ofFndefinable in ℱv. Then either A is definable in ℱ = (F, +, ×) or V is definable in.Theorem B. Let ℛv = (R, <, +, ×, V) be a convexly valued real closed field, where V denotes the valuation ring. Let Abe a subset ofRndefinable in ℛv. Then either A is definable in ℛ = (R, <, +, ×) or V is definable in.The proofs of Theorems A and B are quite similar. Both ℱv and ℛv admit quantifier elimination if we adjoin a definable binary predicate Div (interpreted by Div(x, y) if and only if v(x) ≤ v(y)). This is proved in [14] (extending [13]) in the algebraically closed case, and in [4] in the real closed case. We show by direct combinatorial arguments that if the valuation is not definable then the expanded structure is strongly minimal or o-minimal respectively. Then we call on known results about strongly minimal and o-minimal fields to show that the expansion is not proper.


Sign in / Sign up

Export Citation Format

Share Document