scholarly journals Resistant Starch as Related to Companion Animal Nutrition

2004 ◽  
Vol 87 (3) ◽  
pp. 787-791 ◽  
Author(s):  
Julie K Spears ◽  
George C Fahey

Abstract Companion animal dietsmay contain up to 50% starch, derived from cereal grains. The amount of resistant starch (RS) in an ingredient depends on the origin and form of the ingredient and on the processing conditions to which the ingredient has been exposed. Extrusion has proven to be a means of optimizing utilization of starch by companion animals. Although the RS fraction of starch typically decreases by extrusion, retrogradation can result in increased concentrations of this fraction. Limited research exists regarding the effects of RS in companion animal nutrition and gastrointestinal health. Existing in vitro and in vivo research indicates that certain RS sources are readily fermented in the large bowel, producing short-chain fatty acids, whereas others are less fermentable, resulting in excellent laxation properties. Feeding dogs a diet high in RS may result in an increase in fecal bulk due to an increased excretion of microbial matter in those cases where RS is highly fermentable, or to indigestibility of the RS source in other cases. RS has a role to play as a potential proxy for dietary fiber, especially for those companion animals fed diets high in protein and fat and devoid of traditional dietary fiber.

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 273-273
Author(s):  
Zac Traughber ◽  
Fei He ◽  
Jolene Hoke ◽  
Gary Davenport ◽  
Maria R C de Godoy

Abstract In recent years, ancient grains have become popular sources of novel carbohydrates and fiber in pet foods. End-products of microbial fermentation (e.g. short-chain fatty acids) have been shown to be beneficial to the canine microbiome and overall host health. However, limited research exists on the fermentation characteristics of these increasingly popular grains. Thus, the aim of this study was to quantify the fermentative characteristics of select ancient grains in vitro using canine fecal inoculum. Five ancient grains, amaranth (AM), millet white proso (MWP), oat groats (OG), quinoa (QU), red millet (RM), were evaluated and compared to cellulose (CEL) and beet pulp (BP). Triplicate samples of each substrate were initially subjected to partial digestion of starch and protein to mimic in vivo conditions. They were then fermented for 0, 3, 6, 9, and 12 hours. All test substrates had acetate concentrations similar to that of BP after 6, 9, and 12 hrs. Amaranth, OG, and QU had significantly greater butyrate concentrations than BP and CEL after 6 hours, with all test ingredients having significantly higher butyrate concentrations after 9 and 12 hours. pH decreased significantly after 6 hours with further decreases seen after 9 and 12 hours for all substrates, except CEL. Amaranth, MWP, OG, and RM showed significantly greater pH reductions than CEL and BP, with QU performing similarly to BP. Overall, ancient grains show a moderate and beneficial fermentative profile with greater concentrations of butyrate compared with BP; a traditional and moderate fermentable fiber source used in pet foods. Future research should evaluate these substrates and their blends on gastrointestinal health and fecal quality in vivo.


Author(s):  
Justin L. Caelson ◽  
Jennifer M. Erickson ◽  
Julie M. Hess ◽  
Trevor J. Gould ◽  
Joanne L. Slavin

Prebiotic dietary fiber supplements are commonly consumed to help meet fiber recommendations and improve gastrointestinal health by stimulating beneficial bacteria and the production of short-chain fatty acids (SCFAs), molecules beneficial to host health. The objective of this research project was to compare potential prebiotic effects and fermentability of five commonly consumed fibers using an in vitro fermentation system measuring changes in fecal microbiota, total gas production and formation of common SCFAs. Fecal donations were collected from three healthy volunteers. Materials analyzed included: pure beta-glucan, Oatwell (commercially available oat-bran containing 22% oat β-glucan), xylooligosaccharides (XOS), WholeFiber (dried chicory root containing inulin, pectin, and hemi/celluloses), and pure inulin. Oatwell had the highest production of propionate at 12 h (4.76 μmol/mL) compared to inulin, WholeFiber and XOS samples (p<0.03). Oatwell’s effect was similar to those of the pure beta-glucan samples, both samples promoted the highest mean propionate production at 24 h. XOS resulted in a significant increase in the genus Bifidobacterium after 24 h of fermentation (0 h: 0.67 OTUs; 24 h: 5.22 OTUs; p = 0.038). Inulin and WholeFiber increased the beneficial genus Collinsella, consistent with findings in clinical studies. All analyzed compounds were fermentable and promoted the formation of beneficial SCFAs.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yu Bai ◽  
Xingjian Zhou ◽  
Jinbiao Zhao ◽  
Zhenyu Wang ◽  
Hao Ye ◽  
...  

Effects of different dietary fiber (DF) sources on short-chain fatty acids (SCFA) production and absorption in the hindgut of growing pigs were studied by an in vivo–vitro (ileal cannulated pigs and fecal inoculum-based fermentation) method. Thirty-six cannulated pigs (body weight: 48.5 ± 2.1 kg) were randomly allocated to 6 treatments containing the same DF content (16.5%), with either wheat bran (WB), corn bran (CB), sugar beet pulp (SBP), oat bran (OB), soybean hulls (SH), or rice bran (RB) as DF sources. Pigs were allowed 15 days for diet adaptation, and then, fresh ileal digesta and feces were collected to determine SCFA concentration which was normalized for food dry matter intake (DMI) and the hindgut DF fermentability. Fecal microbiota was inoculated into the freeze-dried ileal digesta samples to predict the ability of SCFA production and absorption in the hindgut by in vitro fermentation. The SH group had the largest concentration of total SCFA and propionate in ileal digesta and fecal samples of growing pigs (p < 0.05). Nonetheless, the predicted acetate, total SCFA production, absorption in the SBP group were the highest (p < 0.01), but the lowest in the OB group (p < 0.01) among all groups. Even SBP and OB group had a similar ratio of soluble DF (SDF) to insoluble DF (IDF). The CB group had high determined ileal and fecal butyrate concentration but the lowest butyrate production and absorption in the hindgut (p < 0.01). Overall, the source of DF had a great impact on the hindgut SCFA production and absorption, and SBP fiber had a great potential to increase hindgut SCFA production and absorption.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 92-OR ◽  
Author(s):  
WEI HUANG ◽  
YONG XU ◽  
YOUHUA XU ◽  
LUPING ZHOU ◽  
CHENLIN GAO

2020 ◽  
Vol 44 (1) ◽  
Author(s):  
Oluwatosin Bode Omotoso ◽  
Mary Oluwafunmilayo Adeduntan ◽  
Adebowale Noah Fajemisin

Abstract Background The study highlighted the potential of three common and under-utilized tropical leguminous seeds (Tomentosa nilotica, Dioclea reflexa and Monodora myristica) to be used as supplementary feed to ruminant livestock. These seeds (their plants inclusive) are valuable sources of food and medicine for the prevention of illness and maintenance of human health. The medicinal properties of these seeds include antimicrobial, anti-inflammatory, anti-oxidant and immuno-stimulant. Trypsin inhibitors, which are common anti-nutritional factors in legumes and for monogastric animals, do not exert adverse effects in ruminants because they are degraded in the rumen. Hence, the crux of this study is to examine the effect of processing methods on the nutritional composition (proximate, fibre fractions, minerals, anti-nutrients) and in vitro digestibility of Tomentosa nilotica, Dioclea reflexa and Monodora myristica seeds and their suitability as feedstuff (protein sources) in small ruminant feed, particularly during off-season. Results From the results, raw Tomentosa nilotica and Monodora myristica have the highest crude protein (30.35% CP) and fat (22.40% EE), respectively. It is noteworthy that roasting best improve the mineral and significantly reduce the anti-nutrients observed in this study better compared to boiling and soaking methods. The highest organic matter digestibility, short-chain fatty acids, metabolizable energy and in vitro dry matter digestibility values were obtained in Dioclea reflexa compared to other test seeds. Roasting best improved the nutritive values, while Dioclea reflexa seed was rated highest for all the nutritional attributes and in vitro digestibility. Conclusions Dioclea reflexa could be incorporated in ruminants’ diet as protein source, particularly during the off-season, for improved ruminant production in Nigeria. However, in vivo study is therefore recommended to validate this report.


Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1386
Author(s):  
Zixin Yang ◽  
Ting Huang ◽  
Ping Li ◽  
Jian Ai ◽  
Jiaxin Liu ◽  
...  

The interactions between cell-wall polysaccharides and polyphenols in the gastrointestinal tract have attracted extensive attention. We hypothesized that dietary fiber modulates the fermentation patterns of cyanidin-3-O-glucoside (C3G) in a fiber-type-dependent manner. In the present study, the effects of four dietary fibers (fructose-oligosaccharides, pectin, β-glucan and arabinoxylan) on the modulation of C3G fermentation patterns were investigated through in vitro fermentation inoculated with human feces. The changes in gas volume, pH, total carbohydrate content, metabolites of C3G, antioxidant activity, and microbial community distribution during in vitro fermentation were analyzed. After 24 h of fermentation, the gas volume and total carbohydrate contents of the four dietary-fiber-supplemented groups respectively increased and decreased to varying degrees. The results showed that the C3G metabolites after in vitro fermentation mainly included cyanidin, protocatechuic acid, 2,4,6-trihydroxybenzoic acid, and 2,4,6-trihydroxybenzaldehyde. Supplementation of dietary fibers changed the proportions of C3G metabolites depending on the structures. Dietary fibers increased the production of short-chain fatty acids and the relative abundance of gut microbiota Bifidobacterium and Lactobacillus, thus potentially maintaining colonic health to a certain extent. In conclusion, the used dietary fibers modulate the fermentation patterns of C3G in a fiber-type-dependent manner.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Shasha Xiang ◽  
Kun Ye ◽  
Mian Li ◽  
Jian Ying ◽  
Huanhuan Wang ◽  
...  

Abstract Background Xylitol, a white or transparent polyol or sugar alcohol, is digestible by colonic microorganisms and promotes the proliferation of beneficial bacteria and the production of short-chain fatty acids (SCFAs), but the mechanism underlying these effects remains unknown. We studied mice fed with 0%, 2% (2.17 g/kg/day), or 5% (5.42 g/kg/day) (weight/weight) xylitol in their chow for 3 months. In addition to the in vivo digestion experiments in mice, 3% (weight/volume) (0.27 g/kg/day for a human being) xylitol was added to a colon simulation system (CDMN) for 7 days. We performed 16S rRNA sequencing, beneficial metabolism biomarker quantification, metabolome, and metatranscriptome analyses to investigate the prebiotic mechanism of xylitol. The representative bacteria related to xylitol digestion were selected for single cultivation and co-culture of two and three bacteria to explore the microbial digestion and utilization of xylitol in media with glucose, xylitol, mixed carbon sources, or no-carbon sources. Besides, the mechanisms underlying the shift in the microbial composition and SCFAs were explored in molecular contexts. Results In both in vivo and in vitro experiments, we found that xylitol did not significantly influence the structure of the gut microbiome. However, it increased all SCFAs, especially propionate in the lumen and butyrate in the mucosa, with a shift in its corresponding bacteria in vitro. Cross-feeding, a relationship in which one organism consumes metabolites excreted by the other, was observed among Lactobacillus reuteri, Bacteroides fragilis, and Escherichia coli in the utilization of xylitol. At the molecular level, we revealed that xylitol dehydrogenase (EC 1.1.1.14), xylulokinase (EC 2.7.1.17), and xylulose phosphate isomerase (EC 5.1.3.1) were key enzymes in xylitol metabolism and were present in Bacteroides and Lachnospiraceae. Therefore, they are considered keystone bacteria in xylitol digestion. Also, xylitol affected the metabolic pathway of propionate, significantly promoting the transcription of phosphate acetyltransferase (EC 2.3.1.8) in Bifidobacterium and increasing the production of propionate. Conclusions Our results revealed that those key enzymes for xylitol digestion from different bacteria can together support the growth of micro-ecology, but they also enhanced the concentration of propionate, which lowered pH to restrict relative amounts of Escherichia and Staphylococcus. Based on the cross-feeding and competition among those bacteria, xylitol can dynamically balance proportions of the gut microbiome to promote enzymes related to xylitol metabolism and SCFAs.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 506
Author(s):  
Bernardo Romão ◽  
Ana Luísa Falcomer ◽  
Gabriela Palos ◽  
Sandra Cavalcante ◽  
Raquel Braz Assunção Botelho ◽  
...  

This study aimed to perform a systematic review and meta-analysis of the glycemic index (GI) of gluten-free bread (GFB) and its main ingredients. The systematic review followed PRISMA guidelines, using seven electronic databases (PubMed, EMBASE, Scopus, Science Direct, Web of Science, gray literature research with Google Scholar, and patents with Google Patent tool), from inception to November 2020. Eighteen studies met the inclusion criteria evaluating 132 GFB samples. Five articles tested GI in vivo, eleven in vitro; and two studies tested both methods. The analysis showed that 60.7% (95% CI: 40.2–78.1%) of the samples presented high glycemic indexes, evidencing a high glycemic profile for GFB. Only 18.2% (95% CI: 11.7–27.2%) of the bread samples presented in the studies were classified as a low GI. Meta-analysis presented moderate/low heterogenicity between studies (I2 = 61% and <1% for both high and low GIs) and reinforced the proportion of high GIs. Lower GIs were found in formulations based on Colocasia esculenta flour or enriched with fiber, yogurt and curd cheese, sourdough, psyllium, hydrocolloids, enzymes, fructans, and resistant starch, highlighting the efficacy of these ingredients to lower GFBs’ GI. GFB tends to present high GI, impacting the development of chronic diseases when consumed.


2016 ◽  
Vol 88 ◽  
pp. 199-206 ◽  
Author(s):  
Cecilie Toft Vangsøe ◽  
Anne Krog Ingerslev ◽  
Peter Kappel Theil ◽  
Mette Skou Hedemann ◽  
Helle Nygaard Lærke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document