PSIV-B-25 Digestible energy and metabolizable energy of high-fiber ingredients in growing pig diets

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 394-395
Author(s):  
Jongkeon Kim ◽  
Yun Yeong Jo ◽  
Beob Gyun G Kim

Abstract The objective of this study was to determine the digestible energy (DE) and metabolizable energy (ME) concentrations in high-fiber ingredients fed to growing pigs. Twelve barrows with an initial body weight of 57.5 kg (SD = 5.7) were individually housed in metabolism crates. A replicated 6 × 3 incomplete Latin square design with 12 animals, 6 experimental diets and 3 periods was employed. A basal diet was composed of 75.0% corn and 22.7% soybean meal (SBM) as the sole energy sources. Four experimental diets were prepared by replacing 40% of corn and SBM with soybean hulls (SH), corn gluten feed (CGF), wheat bran (WB), or rice bran (RB). An additional diet was prepared by replacing 10% of corn and SBM with cashew nut hulls (CNH). Each period consisted of a 4-d adaptation period and a 4-d collection period, and the marker-to-marker procedure was used for total collection of feces and urine. The DE and ME values in RB (3,969 and 3,936 kcal/kg DM) were greater (P < 0.05) than those in CGF (2,654 and 2,520 kcal/kg DM) and SH (2,492 and 2,541 kcal/kg DM) and the energy values in WB (3,162 and 3,118 kcal/kg DM) were not different from those in RB, CGF, or SH. The DE and ME values in CNH (350 and 572 kcal/kg DM) were less (P < 0.05) than those in all other test ingredients. In conclusion, energy concentrations in RB were greatest among the high-fiber test ingredients, whereas CNH had the lowest values.

Animals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 228 ◽  
Author(s):  
Zhengqun Liu ◽  
Ruqing Zhong ◽  
Liang Chen ◽  
Fei Xie ◽  
Kai Li ◽  
...  

This study was conducted to evaluate the effect of collection durations on the energy values and nutrient digestibility of high-fiber diets in growing pigs with a time-based total fecal collection method. A total of 24 barrows (body weight (BW): 31.1 ± 1.5 kg) were allotted to a completely randomized design with three diets. Diets included a corn–soybean meal (CSM) basal diet and two additional diets containing 20% sugar beet pulp (SBP) or defatted rice bran (DFRB) by replacing corn, soybean meal, and soybean oil in the CSM diet, respectively. Each diet was fed to eight barrows for a 7-day adaptation period followed by a 7-day total feces and urine collection period. The 7-day collection duration was divided into three collection phases, namely, phase 1 (days 8 to 11), phase 2 (days 11 to 13), and phase 3 (days 13 to 15). Then, similar portions of feces and urine from the different collection phases were composited into three additional samples (days 8 to 11, days 8 to 13, and days 8 to 15, respectively). The results showed that the digestible energy (DE), metabolizable energy (ME), and apparent total tract digestibility (ATTD) of gross energy (GE) and nutrient in experimental diets decreased linearly as the collection durations increased from a 3-day to a 7-day collection (p < 0.05). However, there were no differences in the energy values, GE, and nutrient digestibility of diets and of high-fiber ingredients between the 5-day and 7-day collection durations. In conclusion, this study suggests that a 5-day collection duration is adequate to determine the energy values and nutrient digestibility of high-fiber diets containing SBP or DFRB in growing pigs by the time-based total fecal collection method.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Diego A Rodriguez ◽  
Su A Lee ◽  
María R C de Godoy ◽  
Hans H Stein

Abstract Two experiments were conducted to determine effects of extrusion on energy and nutrient digestibility in soybean hulls. One source of soybean hulls was ground and divided into two batches. One batch was used without further processing, whereas the other batch was extruded. In Exp. 1, four diets were formulated to determine crude protein (CP) and amino acid (AA) digestibility in soybean hulls. A soybean meal-based diet in which soybean meal provided all the CP and AA was formulated. Two diets were formulated to contain 30% nonextruded or extruded soybean hulls and 18% soybean meal. An N-free diet that was used to determine the endogenous losses of CP and AA was also used. Eight growing barrows (initial body weight = 37.0 ± 3.9 kg) had a T-cannula installed in the distal ileum and were allotted to a replicated 4 × 4 Latin square design. Each experimental period lasted 7 d with the initial 5 d being the adaptation period and ileal digesta were collected for 8 h on day 6 and 7. Results indicated that extrusion of soybean hulls did not change the standardized ileal digestibility (SID) of CP and most AA with the exception that the SID of Ile and Leu tended (P &lt; 0.10) to be greater in extruded than nonextruded soybean hulls. In Exp. 2, three diets were formulated to determine energy digestibility in soybean hulls. One corn-soybean meal based basal diet, and two diets that contained corn, soybean meal, and 32% extruded or nonextruded soybean hulls were formulated. Twenty-four growing barrows (initial body weight = 59.9 ± 3.4 kg) were allotted to a randomized complete block design. Pigs were housed individually in metabolism crates and feces and urine were collected separately for 4 d after 5 d of adaptation. The apparent total tract digestibility (ATTD) of gross energy (GE) and the digestible energy (DE) and metabolizable energy (ME) were reduced (P &lt; 0.05) in diets containing nonextruded or extruded soybean hulls compared with the basal diet. However, the ATTD of GE and values for DE and ME in soybean hulls were not improved by extrusion. Likewise, extrusion did not change the concentration of total dietary fiber in soybean hulls. In conclusion, there were no effects of extrusion of soybean hulls on SID of AA, energy digestibility, or ME concentration in soybean hulls.


2005 ◽  
Vol 85 (3) ◽  
pp. 355-363 ◽  
Author(s):  
C. Kaufmann ◽  
W. C. Sauer ◽  
M. Cervantes ◽  
Y. Zhang ◽  
J. He ◽  
...  

Studies were carried out to determine the digestibilities of amino acids (AA) and energy in five sources of rice bran (RB). The sources of RB included two that were not further processed, a defatted, an extruded, and an atypical source of RB consisting mainly of starchy endosperm referred to as polish. Six barrows, average initial body weight 36.5 kg, were fitted with a simple T-cannula at the distal ileum, and fed six diets according to a 6 × 6 Latin square design. The five RB-containing diets contained 53.8% corn, 19.9% soybean meal, and 23.1% RB. The basal diet contained 71.0% corn and 26.3% soybean meal. The dietary allowance was provided at a rate of 4% (wt/wt) of the individual body weight determined at the initiation of each experimental period. Each experimental period comprised 11 d. Following a 7-d adaptation period, faeces were collected for 48 h and ileal digesta for 24 h in two 12-h periods. Chromic oxide was used as the digestibility marker. There was considerable variation in AA digestibilities among the RB samples. By aid of the difference method under the dietary conditions specified, the apparent ileal digestibilities of lysine, methionine, threonine, and tryptophan ranged from 62.6 to 82.2, 61.4 to 76.0, 58.4 to 82.8, and 58.8 to 82.6%, respectively. The digestibilities were lowest in the defatted source of RB and highest in polish. Not including polish of which the total tract energy digestibility was 88.2%, the digestibilities of the other samples ranged from 60.5 to 65.8%. A small proportion of the variation in AA digestibility can be attributed to the content of crude protein, fat and ash in RB. Key words: Amino acids, digestibility, energy, pigs, rice bran


1993 ◽  
Vol 57 (2) ◽  
pp. 227-236 ◽  
Author(s):  
S. J. Oosting ◽  
H. A. Boekholt ◽  
M. J. N. Los ◽  
C. P. Leffering

AbstractTwo experiments, experiment 1 with six steers in a 3 × 3 Latin-square design and experiment 2 with four wether sheep in a cross-over design, were conducted to study the effect of species and ammonia treatment on intake and utilization of the energy of untreated wheat straw. Treatments were: (1) untreated wheat straw offered ad libitum on top of a basal diet (B) consisting of hay (0·25) and grass pellets (0·75) (UWS), (2) ammoniated wheat straw offered ad libitum plus B (AWS) and (3) ammoniated wheat straw offered at a restricted level plus B (AWS-). B was offered as a maintenance diet for both species and AWS- was only studied in steers. Voluntary intake of AWS zvas higher than that of UWS. No significant differences emerged between whole rations UWS and AWS with regard to energy digestion (ED), energy metabolizability (ρ = metabolizable energy (ME) I gross energy (GE)) and losses of digestible energy (DE) in urine and methane (average 187 J/KJ DE), but the efficiency of utilization of ME for growth (kg) was significantly higher for AWS than for UWS. ED and ρ of the straw part of the ration was significantly higher for AWS than for UWS. AWS- and AWS did not differ significantly with regard to ED, ρ and DE losses in methane and urine. Steers had a higher intake per kg0·75 per day than wether sheep. Across species, digestible energy intake (DEI) of the whole ad libitum fed diets was related to live weight (M)0·946 (s.e. of exponent 0·0152). ED and ρ of the straw part of the rations did not differ significantly between species, but steers had a significantly higher ED and ρ of β than wether sheep. Steers excreted a significantly lower proportion of DE in urine and a significantly higher proportion of DE in methane than did wethers. Total energy losses in urine and methane, however, did not differ between species.


2019 ◽  
Vol 97 (7) ◽  
pp. 3056-3070 ◽  
Author(s):  
Emily A Petzel ◽  
Evan C Titgemeyer ◽  
Alexander J Smart ◽  
Kristin E Hales ◽  
Andrew P Foote ◽  
...  

AbstractTwo experiments were conducted to measure rates of ruminal disappearance, and energy and nutrient availability and N balance among cows fed corn husks, leaves, or stalks. Ruminal disappearance was estimated after incubation of polyester bags containing husks, leaves or stalks in 2 separate ruminally cannulated cows in a completely randomized design. Organic matter (OM) that initially disappeared was greatest for stalks and least for husks and leaves (P < 0.01), but amounts of NDF that initially disappeared was greatest for husks, intermediate for stalks, and least for leaves (P < 0.01). Amounts of DM and OM that slowly disappeared were greatest in husks, intermediate in leaves, and least in stalks (P < 0.01). However, amounts of NDF that slowly disappeared were greatest in leaves, intermediate in husks, and least in stalks (P < 0.01). Rate of DM and OM disappearance was greater for leaves, intermediate for husks and least for stalks, but rate of NDF disappearance was greatest for stalks, intermediate for leaves, and least for husks (P < 0.01). Energy and nutrient availability in husks, leaves, or stalks were measured by feeding ruminally cannulated cows husk-, leaf-, or stalk-based diets in a replicated Latin square. Digestible energy lost as methane was less (P = 0.02) when cows were fed leaves in comparison to husks or stalks, and metabolizable energy (Mcal/kg DM) was greater (P = 0.03) when cows were fed husks and leaves compared with stalks. Heat production (Mcal/d) was not different (P = 0.74) between husks, leaves, or stalks; however, amounts of heat produced as a proportion of digestible energy intake were less (P = 0.05) among cows fed leaves in comparison to stalks or husks. Subsequently, there was a tendency (P = 0.06) for net energy available for maintenance from leaves (1.42 Mcal/kg DM) to be greater than stalks (0.91 Mcal/kg DM), and husks (1.30 Mcal/kg DM) were intermediate. Nitrogen balance was greater when cows were fed leaves, intermediate for husks, and least for stalks (P = 0.01). Total tract digestion of NDF was greater (P < 0.01) for husks and leaves compared with stalks. Husks had greater (P = 0.04) OM digestibility in comparison to stalks, and leaves were intermediate. Apparently, greater production of methane from husks in comparison to leaves limited amounts of energy available for maintenance from husks even though total-tract nutrient digestion was greatest when cows were fed husks or leaves.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 80-80
Author(s):  
Jinlong Zhu ◽  
Gerald C Shurson ◽  
Lynsey Whitacre ◽  
Ignacio R Ipharraguerre ◽  
Pedro E Urriola

Abstract The objective of this study was to determine the effects of an Aspergillus oryzae prebiotic (AOP, Amaferm®) on nutrient digestibility in growing pigs fed high fiber diets. Eighteen growing barrows (initial BW = 50.60 ± 4.90 kg) were surgically equipped with a T-cannula at the distal ileum. Three diets were formulated by including 29.65% corn-distillers dried grains with solubles (DDGS), 36.65% rice bran (RB) or 24.59% wheat middlings (WM) in corn and soybean meal-based diets to meet nutrient requirements for 50 to 75 kg growing pigs. Three additional diets were formulated by supplementing 0.05% AOP at the expense of corn in DDGS (DDGS + AOP), RB (RB + AOP), and wheat middlings (WM + AOP) diets. Pigs were allotted randomly to a triplicated 6 × 2 Youden square design with 6 diets and 2 successive periods. Feces and ileal digesta were collected for 2 d after a 21 d adaptation period, and nutrient content was analyzed to calculate apparent total tract digestibility (ATTD) and apparent ileal digestibility (AID). Standardized ileal digestibility (SID) of amino acids was calculated by correcting AID with basal endogenous amino acid losses determined from the same set of pigs. Supplementation of 0.05% AOP increased (P &lt; 0.05) ATTD of DM, GE, CP, NDF, and ash in DDGS, RB, and WM diets. Diet DE was 35 kcal/kg greater (P &lt; 0.05) in pigs fed AOP supplemented diets compared with those fed diets without AOP. Pigs fed DDGS+AOP diet had greater (P &lt; 0.05) AID of ether extract compared to those fed DDGS diet. However, supplementation of AOP did not (P &gt; 0.05) affect AID of GE, DM, CP, NDF, ash or SID of amino acids. In conclusion, supplementation of AOP in high fiber diets containing DDGS, RB, or WM increased total tract energy value and nutrient digestibility.


Author(s):  
Amy L Petry ◽  
Nichole F Huntley ◽  
Michael R Bedford ◽  
John F Patience

Abstract In theory, supplementing xylanase in corn-based swine diets should improve nutrient and energy digestibility and fiber fermentability, but its efficacy is inconsistent. The experimental objective was to investigate the impact of xylanase on energy and nutrient digestibility, digesta viscosity, and fermentation when pigs are fed a diet high in insoluble fiber (&gt;20% neutral detergent fiber; NDF) and given a 46-d dietary adaptation period. Three replicates of 20 growing gilts were blocked by initial body weight, individually housed, and assigned to 1 of 4 dietary treatments: a low-fiber control (LF) with 7.5% NDF, a 30% corn bran high-fiber control (HF; 21.9% NDF), HF+100 mg xylanase/kg [HF+XY, (Econase XT 25P; AB Vista, Marlborough, UK)] providing 16,000 birch xylan units/kg; and HF+50 mg arabinoxylan-oligosaccharide (AXOS) product/kg [HF+AX, (XOS 35A; Shandong Longlive Biotechnology, Shandong, China)] providing AXOS with 3-7 degrees of polymerization. Gilts were allowed ad libitum access to fed for 36-d. On d 36, pigs were housed in metabolism crates for a 10-d period, limit fed, and feces were collected. On d 46, pigs were euthanized and ileal, cecal, and colonic digesta were collected. Data were analyzed as a linear mixed model with block and replication as random effects, and treatment as a fixed effect. Compared with LF, HF reduced the apparent ileal digestibility (AID), apparent cecal digestibility (ACED), apparent colonic digestibility (ACOD), and apparent total tract digestibility (ATTD) of dry matter (DM), gross energy (GE), crude protein (CP), acid detergent fiber (ADF), NDF, and hemicellulose (P&lt;0.01). Relative to HF, HF+XY improved the AID of GE, CP, and NDF (P&lt;0.05), and improved the ACED, ACOD, and ATTD of DM, GE, CP, NDF, ADF, and hemicellulose (P&lt;0.05). Among treatments, pigs fed HF had increased hindgut DM disappearance (P=0.031). Relative to HF, HF+XY improved cecal disappearance of DM (162 vs. 98g; P=0.008) and NDF (44 vs. 13g; P&lt;0.01). Pigs fed xylanase had a greater proportion of acetate in cecal digesta and butyrate in colonic digesta among treatments (P&lt;0.05). Compared with LF, HF increased ileal, cecal, and colonic viscosity, but HF+XY decreased ileal viscosity compared with HF (P&lt;0.001). In conclusion, increased insoluble corn-based fiber decreases digestibility, reduces cecal fermentation, and increases digesta viscosity, but supplementing xylanase partially mitigated that effect.


1972 ◽  
Vol 79 (1) ◽  
pp. 99-103 ◽  
Author(s):  
A. M. Raven

SUMMARYA 6 x 6 Latin Square balance experiment was carried out using six Friesian steers, each of which initially weighed about 304 kg. The six treatments studied were an all-hay diet and five other diets containing 20,40,60,80 and 100 % of rolled barley fortified with mineral and vitamin supplements, accompanied by correspondingly reduced proportions of hay. Each diet was fed at an estimated maintenance level of feeding.The progressive increase in the proportion of concentrate gave a significantly linear increase (P < 0·001) in both digestible and calculated metabolizable energy. The actual increase in digestible energy was from 2·62Mcal/kg dry matter (59·3% of the gross energy) on the all-hay treatment to 3·42 Mcal/kg dry matter (79·5% of the gross energy) on the all-concentrate treatment. Use of the determined digestible energy values for the all-hay and fortified barley diets to calculate the digestible energy of the four mixed diets gave results in reasonably good agreement with the determined values, the maximum difference being 0·12 Mcal/kg dry matter, which represented 3·83 % of the determined value. The losses of energy in the urine expressed as percentages of the gross energy of the diets showed a small but significantly linear decrease (P < 0·01) with increase in proportion of barley in the diet. The molar proportions of steamvolatile acids in samples of rumen fluid taken from two animals on each treatment indicated that increase in the proportion of concentrate was associated with tendencies for increase in acetic acid, decrease in propionic acid and little change in butyric acid. The mean digestibility of the organic matter was 62·6 % on the all-hay treatment and 81·8 % on the all concentrate treatment. The progressive increase in the proportion of concentrate gave a significantly linear increase (P < 0·001) in digestibility of the organic matter. Although intakes of nitrogen decreased with increase in the proportion of concentrate due to a decrease in the amount of dry matter fed, the weights of nitrogen retained were well maintained and when expressed as percentages of intake showed a significantly linear increase (P < 0·01).


Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Charles Martin Nyachoti

Abstract An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates/treatment). The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121°C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P &lt; 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P &lt; 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Michelina Crosbie ◽  
Cuilan Zhu ◽  
Anna K Shoveller ◽  
Lee-Anne Huber

Abstract Two experiments were conducted to determine standardized ileal digestibility (SID) of amino acids (AA; Exp. 1) and net energy (Exp. 2) in two black soldier fly larvae meal (BSFLM) samples [full fat (FF; 42.5% crude protein (CP), as-fed) and defatted (DF; 40.8% CP; as-fed)] for growing pigs. Two cornstarch-based diets were formulated with FF and DF BSFLM as the sole sources of AA. A nitrogen-free diet was also used, and the corn starch:sucrose:oil ratio was kept constant among diets to calculate digestible energy (DE) by difference method. In each experiment, pigs were fed 2.8 × estimated maintenance energy requirement. In Exp. 1, eight ileal-cannulated barrows (25.1 ± 0.41 kg initial body weight) were used in a replicated 2 × 2 Latin square design (n = 8). In each period, pigs were adapted to diets for 5 d followed by 2 d of continuous ileal digesta collection for 8 h. The SID of AA were calculated using basal endogenous losses for pigs fed a nitrogen-free diet. In Exp. 2, eight barrows [23.4 ± 0.54 kg initial body weight (BW)] were used in a partially replicated Latin square design (n = 8). In each period, pigs were adapted to diets for 7 d, followed by 5 d of total urine collection and fecal grab sampling. The SID of CP (80.6 ± 1.1%) and Lys (88.0 ± 1.4%) were not different between FF and DF BSFLM. The SID of Arg, Val, Ala, and Pro tended to be less, and the SID of Met tended to be greater for the FF versus the DF BSFLM (P = 0.034, 0.090, 0.053, 0.065, 0.074, respectively). Digestible energy (4,927 vs. 3,941 ± 75 kcal/kg), metabolizable energy (4,569 vs. 3,396 ± 102 kcal/kg), and predicted net energy (3,477 vs. 2,640 ± 30 kcal/kg, using equations from Noblet; 3,479 vs. 2,287 ± 28 kcal/kg, using equations from Blok, respectively) were greater for the FF versus the DF BSFLM (P &lt; 0.05). The apparent total tract digestibility of neutral detergent fiber and acid detergent fiber were greater for the FF versus the DF BSFLM (P ≤ 0.05). Both FF and DF BSFLM had high SID for most AA; however, FF BSFLM was a better source of net energy for growing pigs. Therefore, both FF and DF BSFLM could be used as protein alternatives in growing pig diets.


Sign in / Sign up

Export Citation Format

Share Document