6. Dorsal root ganglion neurons: electrical properties and cell type

It has been shown that there are two main morphological neuronal types in rat and mouse dorsal root ganglia (d.r.g.s), the large light (LL) and small dark (s.d.) neurons. Each population has a normally distributed range of cell sizes with different means, and the size ranges of the two populations overlap (Lawson 1979; Lawson & Harper, in press).

1999 ◽  
Vol 126 (2) ◽  
pp. 429-436 ◽  
Author(s):  
Shinya Ueno ◽  
Makoto Tsuda ◽  
Toshihiko Iwanaga ◽  
Kazuhide Inoue

2008 ◽  
Vol 100 (3) ◽  
pp. 1184-1201 ◽  
Author(s):  
Alan R. Light ◽  
Ronald W. Hughen ◽  
Jie Zhang ◽  
Jon Rainier ◽  
Zhuqing Liu ◽  
...  

The adequate stimuli and molecular receptors for muscle metaboreceptors and nociceptors are still under investigation. We used calcium imaging of cultured primary sensory dorsal root ganglion (DRG) neurons from C57Bl/6 mice to determine candidates for metabolites that could be the adequate stimuli and receptors that could detect these stimuli. Retrograde DiI labeling determined that some of these neurons innervated skeletal muscle. We found that combinations of protons, ATP, and lactate were much more effective than individually applied compounds for activating rapid calcium increases in muscle-innervating dorsal root ganglion neurons. Antagonists for P2X, ASIC, and TRPV1 receptors suggested that these three receptors act together to detect protons, ATP, and lactate when presented together in physiologically relevant concentrations. Two populations of muscle-innervating DRG neurons were found. One responded to low metabolite levels (likely nonnoxious) and used ASIC3, P2X5, and TRPV1 as molecular receptors to detect these metabolites. The other responded to high levels of metabolites (likely noxious) and used ASIC3, P2X4, and TRPV1 as their molecular receptors. We conclude that a combination of ASIC, P2X5 and/or P2X4, and TRPV1 are the molecular receptors used to detect metabolites by muscle-innervating sensory neurons. We further conclude that the adequate stimuli for muscle metaboreceptors and nociceptors are combinations of protons, ATP, and lactate.


1990 ◽  
Vol 64 (1) ◽  
pp. 57-63 ◽  
Author(s):  
G. White

1. gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter affecting dorsal root ganglion (DRG) neurons. This study compares properties of current activated by the GABAA receptor in two populations of DRG neurons. DRG neurons were isolated from adult rat with the use of enzymatic and mechanical means. Within hours of being isolated, neurons were recorded from with the use of the whole-cell variant of the patch-clamp technique. 2. One population of neurons exhibited an afterdepolarizing potential (ADP), a low threshold for action-potential generation (-45 to -50 mV), a short-duration action potential (less than 2 ms) that was abolished in the presence of 1-2 microM tetrodotoxin (TTX), and an insensitivity to 50 nM capsaicin. The second population of neurons exhibited a high threshold for action-potential generation (less than -40 mV), a shoulder on the falling phase of the action potential, insensitivity of action-potential generation to TTX (1-2 microM), and a depolarizing response to application of 50 nM capsaicin. 3. Sensitivity to GABA (over the range of 1–1,000 microM) was comparable for the two populations of neurons. 4. GABA-activated current was greater in ADP neurons than in non-ADP-type neurons of a comparable diameter (30-50 microns). The mean +/- SE amplitude of current activated by 10 microM GABA in ADP neurons was 0.310 +/- 0.050 nA (range = 0.110-0.460 nA, n = 8), and 0.037 +/- 0.016 nA (range = 0.010-0.130 pA, n = 7) in non-ADP neurons. Ten microM GABA elicited cell firing in ADP neurons but not in non-ADP neurons.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 23 (10) ◽  
pp. 4355-4361 ◽  
Author(s):  
Naoki Yoshimura ◽  
Satoshi Seki ◽  
Kristin A. Erickson ◽  
Vickie L. Erickson ◽  
Michael B. Chancellor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document