scholarly journals The Okur-Chung Neurodevelopmental Syndrome (OCNDS) mutation CK2K198R leads to a rewiring of kinase specificity

2021 ◽  
Author(s):  
Danielle M Caefer ◽  
Nhat Q Phan ◽  
Jennifer C Liddle ◽  
Jeremy L Balsbaugh ◽  
Joseph P O’Shea ◽  
...  

AbstractOkur-Chung Neurodevelopmental Syndrome (OCNDS) is caused by heterozygous mutations to the CSNK2A1 gene, which encodes the alpha subunit of casein kinase II (CK2). The most frequently occurring mutation is lysine 198 to arginine (K198R). To investigate the impact of this mutation, we first generated a high-resolution phosphorylation motif of CK2WT, including the first characterization of specificity for tyrosine phosphorylation activity. A second high resolution motif representing CK2K198R substrate specificity was also generated. Here we report for the first time the impact of the OCNDS associated CK2K198R mutation. Contrary to prior speculation, the mutation does not result in a loss of function, but rather shifts the substrate specificity of the kinase. Broadly speaking the mutation leads to 1) a decreased preference for acidic residues in the +1 position, 2) a decreased preference for threonine phosphorylation, 3) an increased preference for tyrosine phosphorylation, and 4) an alteration of the tyrosine phosphorylation specificity motif. To further investigate the result of this mutation we have developed a probability-based scoring method, allowing us to predict shifts in phosphorylation in the K198R mutant relative to the wild type kinase. As an initial step we have applied the methodology to the set of axonally localized ion channels in an effort to uncover potential alterations of the phosphoproteome associated with the OCNDS disease condition.

2018 ◽  
Vol 19 (10) ◽  
pp. 2962 ◽  
Author(s):  
Liliana Rytel

Bisphenol A (BPA), a substance commonly used in the manufacture of plastics, shows multidirectional negative effects on humans and animals. Due to similarities to estrogens, BPA initially leads to disorders in the reproductive system. On the other hand, it is known that neuregulin 1 (NRG-1) is an active substance which enhances the survivability of cells, inhibits apoptosis, and protects tissues against damaging factors. Because the influence of BPA on the nervous system has also been described, the aim of the present study was to investigate for the first time the influence of various doses of BPA on neuregulin 1-like immunoreactive (NRG-1-LI) nerves located in the porcine uterus using the routine single- and double-immunofluorescence technique. The obtained results have shown that BPA increases the number and affects the neurochemical characterization of NRG-1-LI in the uterus, and changes are visible even under the impact of small doses of this toxin. The character of observed changes depended on the dose of BPA and the part of the uterus studied. These observations suggest that NRG-1 in nerves supplying the uterus may play roles in adaptive and protective mechanisms under the impact of BPA.


2006 ◽  
Vol 291 (6) ◽  
pp. C1377-C1387 ◽  
Author(s):  
Pernille Bøttger ◽  
Susanne E. Hede ◽  
Morten Grunnet ◽  
Boy Høyer ◽  
Dan A. Klærke ◽  
...  

The general phosphate need in mammalian cells is accommodated by members of the Pitransport (PiT) family ( SLC20), which use either Na+or H+to mediate inorganic phosphate (Pi) symport. The mammalian PiT paralogs PiT1 and PiT2 are Na+-dependent Pi(NaPi) transporters and are exploited by a group of retroviruses for cell entry. Human PiT1 and PiT2 were characterized by expression in Xenopus laevis oocytes with32Pias a traceable Pisource. For PiT1, the Michaelis-Menten constant for Piwas determined as 322.5 ± 124.5 μM. PiT2 was analyzed for the first time and showed positive cooperativity in Piuptake with a half-maximal activity constant for Piof 163.5 ± 39.8 μM. PiT1- and PiT2-mediated Na+-dependent Piuptake functions were not significantly affected by acidic and alkaline pH and displayed similar Na+dependency patterns. However, only PiT2 was capable of Na+-independent Pitransport at acidic pH. Study of the impact of divalent cations Ca2+and Mg2+revealed that Ca2+was important, but not critical, for NaPitransport function of PiT proteins. To gain insight into the NaPicotransport function, we analyzed PiT2 and a PiT2 Pitransport knockout mutant using22Na+as a traceable Na+source. Na+was transported by PiT2 even without Piin the uptake medium and also when Pitransport function was knocked out. This is the first time decoupling of Pifrom Na+transport has been demonstrated for a PiT family member. Moreover, the results imply that putative transmembrane amino acids E55and E575are responsible for linking Piimport to Na+transport in PiT2.


2006 ◽  
Vol 394 (1) ◽  
pp. 163-171 ◽  
Author(s):  
Sandra Müller ◽  
Jennifer Disse ◽  
Manuela Schöttler ◽  
Sylvia Schön ◽  
Christian Prante ◽  
...  

Human XT-I (xylosyltransferase I; EC 2.4.2.26) initiates the biosynthesis of the glycosaminoglycan linkage region and is a diagnostic marker of an enhanced proteoglycan biosynthesis. In the present study, we have investigated mutant enzymes of human XT-I and assessed the impact of the N-terminal region on the enzymatic activity. Soluble mutant enzymes of human XT-I with deletions at the N-terminal domain were expressed in insect cells and analysed for catalytic activity. As many as 260 amino acids could be truncated at the N-terminal region of the enzyme without affecting its catalytic activity. However, truncation of 266, 272 and 273 amino acids resulted in a 70, 90 and >98% loss in catalytic activity. Interestingly, deletion of the single 12 amino acid motif G261KEAISALSRAK272 leads to a loss-of-function XT-I mutant. This is in agreement with our findings analysing the importance of the Cys residues where we have shown that C276A mutation resulted in a nearly inactive XT-I enzyme. Moreover, we investigated the location of the heparin-binding site of human XT-I using the truncated mutants. Heparin binding was observed to be slightly altered in mutants lacking 289 or 568 amino acids, but deletion of the potential heparin-binding motif P721KKVFKI727 did not lead to a loss of heparin binding capacity. The effect of heparin or UDP on the XT-I activity of all mutants was not significantly different from that of the wild-type. Our study demonstrates that over 80% of the nucleotide sequence of the XT-I-cDNA is necessary for expressing a recombinant enzyme with full catalytic activity.


2015 ◽  
Vol 51 (56) ◽  
pp. 11305-11308 ◽  
Author(s):  
Sven Thorwirth ◽  
Ralf I. Kaiser ◽  
Kyle N. Crabtree ◽  
Michael C. McCarthy

The fundamental silaisocyanides HCCNSi, HC4NSi, and NCNSi have been characterized at high spectral resolution for the first time. All three chains are good candidates for radio astronomical detection.


2013 ◽  
Vol 11 (8) ◽  
pp. 1309-1319 ◽  
Author(s):  
Roxana Ghiulai ◽  
Mirela Galusca ◽  
Ioana Sisu ◽  
Eugen Sisu ◽  
Alina Zamfir

AbstractIn this study maltose, maltotriose and maltotetraose were for the first time, coupled to 4,4′-methylenedianiline (MDA). The aim of this preliminary work was to test the feasibility of oligo- and polysaccharide coupling to MDA and the characterization of the coupling products by high resolution mass spectrometry (MS). (+) nanoESI in combination with a quadrupole time of flight (QTOF) MS in full scan (MS) and MS/MS was optimized first on underivatized maltose, maltotriose and maltotetraose. The optimal screening and sequencing conditions were further applied to the MDA-functionalized oligosaccharides. The obtained results revealed a straightforward MS detection of the functionalized oligomers, high sequence coverage and a fragmentation pathway with the formation of B and Y ions as well as the complementary C and Z ions along with a typical cleavage of the aglycon. We consider that this methodology is fully applicable also to polydisperse mixtures of long chain polysaccharides, which due to the large number of components and their size require a systematic method of development and testing.


2020 ◽  
Vol 495 (1) ◽  
pp. 502-509 ◽  
Author(s):  
Yu Morinaga ◽  
Tomoaki Ishiyama

ABSTRACT Dark matter haloes are formed through hierarchical mergers of smaller haloes in large-scale cosmic environments, and thus anisotropic subhalo accretion through cosmic filaments has some impacts on halo structures. Recent studies using cosmological simulations have shown that the orientations of haloes correlate with the direction of cosmic filaments, and these correlations significantly depend on the halo mass. Using high-resolution cosmological N-body simulations, we quantified the strength of filamentary subhalo accretion for galaxy- and group-sized host haloes (Mhost = 5 × 1011–13 M⊙) by regarding the entry points of subhaloes as filaments and present statistical studies on how the shape and orientation of host haloes at redshift zero correlate with the strength of filamentary subhalo accretion. We confirm previous studies that found the host halo mass dependence of the alignment between orientations of haloes and filaments. We also show that, for the first time, the shape and orientation of haloes weakly correlate with the strength of filamentary subhalo accretion even if the host halo masses are the same. Minor-to-major axial ratios of haloes tend to decrease as their filamentary accretion gets stronger. Haloes with highly anisotropic accretion become more spherical or oblate, while haloes with isotropic accretion become more prolate or triaxial. For haloes with strong filamentary accretion, their major axes are preferentially aligned with the filaments, while their angular momentum vectors tend to be slightly more misaligned.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1060
Author(s):  
Guillaume Le Guyader ◽  
Bernard Do ◽  
Victoire Vieillard ◽  
Karine Andrieux ◽  
Muriel Paul

Rapamycin has been used topically to treat facial angiofibromas associated with tuberous sclerosis for more than a decade. In the absence of a commercial form, a large number of formulations have been clinically tested. However, given the great heterogeneity of these studies, particularly with regard to the response criteria, it was difficult to know the impact and thus to compare the relevance of the formulations used. The objective of this work was therefore to evaluate the link between the diffusion of rapamycin and the physico-chemical characteristics of these different formulations on Strat-M® membranes as well as on human skin using Franz cells. Our results underline the importance of the type of vehicle used (hydrogel > cream > lipophilic ointment), the soluble state of rapamycin and its concentration close to saturation to ensure maximum thermodynamic activity. Thus, this is the first time that a comparative study of the different rapamycin formulations identified in the literature for the management of facial angiofibromas has been carried out using a pharmaceutical and biopharmaceutical approach. It highlights the important parameters to be considered in the development and optimization of topical rapamycin formulations with regard to cutaneous absorption for clinical efficacy.


2016 ◽  
Vol 9 (8) ◽  
pp. 3969-3986 ◽  
Author(s):  
Patrick Brophy ◽  
Delphine K. Farmer

Abstract. We present a comprehensive characterization of cluster control and transmission through the Tofwerk atmospheric pressure interface installed on various chemical ionization time-of-flight mass spectrometers using authentic standards. This characterization of the atmospheric pressure interface allows for a detailed investigation of the acetate chemical ionization mechanisms and the impact of controlling these mechanisms on sensitivity, selectivity, and mass spectral ambiguity with the aim of non-targeted analysis. Chemical ionization with acetate reagent ions is controlled by a distribution of reagent ion-neutral clusters that vary with relative humidity and the concentration of the acetic anhydride precursor. Deprotonated carboxylic acids are primarily detected only if sufficient declustering is employed inside the atmospheric pressure interface. The configuration of a high-resolution time-of-flight chemical ionization mass spectrometer (HR-TOF-CIMS) using an acetate chemical ionization source for non-targeted analysis is discussed. Recent approaches and studies characterizing acetate chemical ionization as it applies to the HR-TOF-CIMS are evaluated in light of the work presented herein.


2021 ◽  
Author(s):  
Elena Alexa ◽  
José F Cobo-Diaz ◽  
Erica Renes ◽  
Tom F O´Callaghan ◽  
Kieran Kilcawley ◽  
...  

Abstract Microorganisms colonising processing environments can significantly impact food quality and safety. Here we describe a detailed longitudinal study assessing the impact of cave ripening on the microbial succession and quality markers across different producers of blue-veined cheese. Both the producer and cave in which cheeses were ripened significantly influenced the cheese microbiome and metabolome. The cheese microbiome was significantly determined by the microbiome of caves, which were a source of Brevibacterium, Corynebacterium, Staphylococcus, Tetragenococcus and Yaniella, among others, as demonstrated through source tracking and the characterization of 613 metagenome assembled genomes. Tetragenococcus koreensis and T. halophilus were detected at high abundance in cheese for the first time, associated with the occurrence of various metabolites, and showed high levels of horizontal gene transfer with other members of the cheese microbiome. Overall, we demonstrated that processing environments can be a source of non-starter microorganisms of relevance to ripening of artisanal fermented foods.


Sign in / Sign up

Export Citation Format

Share Document