scholarly journals Haplotype Associated RNA Expression (HARE) Improves Prediction of Complex Traits in Maize

2021 ◽  
Author(s):  
Anju Giri ◽  
Merritt Khaipho-Burch ◽  
Edward S. Buckler ◽  
Guillaume P. Ramstein

AbstractGenomic prediction typically relies on associations between single-site polymorphisms and traits of interest. This representation of genomic variability has been successful for prediction within populations. However, it usually cannot capture the complex effects due to combination of alleles in haplotypes. Therefore, accuracy across populations has usually been low. Here we present a novel and cost-effective method for imputing cis haplotype associated RNA expression (HARE, RNA expression of genes by haplotype), studied their transferability across tissues, and evaluated genomic prediction models within and across populations. HARE focuses on tightly linked cis acting causal variants in the immediate vicinity of the gene, while excluding trans effects from diffusion and metabolism, so it would be more transferrable across different tissues and populations. We showed that HARE estimates captured one-third of the variation in gene expression and were more transferable across diverse tissues than the measured transcript expression. HARE estimates were used in genomic prediction models evaluated within and across two diverse maize panels – a diverse association panel (Goodman Association panel) and a large half-sib panel (Nested Association Mapping panel) – for predicting 26 complex traits. HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved haplotype structure, suggesting that HARE carried functional information in addition to information about haplotype structure. The largest increase was observed when the model was trained in the Nested Association Mapping panel and tested in the Goodman Association panel. Additionally, HARE yielded higher within-population prediction accuracy as compared to measured expression values. The accuracy achieved by measured expression was variable across tissues whereas accuracy using HARE was more stable across tissues. Therefore, imputing RNA expression of genes by haplotype is stable, cost-effective, and transferable across populations.Author summaryThe increasing availability of genomic data has been widely used in the prediction of many traits. However, genome wide prediction has been mostly carried out within populations and without explicit modeling of RNA or protein expression. In this study, we explored the prediction of field traits within and across populations using estimated RNA expression attributable to only the DNA sequence around a gene. We showed that the estimated RNA expression was more transferable than overall measured RNA expression. We improved prediction of field traits up to 15% using estimated gene expression as compared to observed expression or gene sequence alone. Overall, these findings indicate that structural and functional information in the gene sequence are highly transferable.

PLoS Genetics ◽  
2021 ◽  
Vol 17 (10) ◽  
pp. e1009568
Author(s):  
Anju Giri ◽  
Merritt Khaipho-Burch ◽  
Edward S. Buckler ◽  
Guillaume P. Ramstein

Genomic prediction typically relies on associations between single-site polymorphisms and traits of interest. This representation of genomic variability has been successful for predicting many complex traits. However, it usually cannot capture the combination of alleles in haplotypes and it has generated little insight about the biological function of polymorphisms. Here we present a novel and cost-effective method for imputing cis haplotype associated RNA expression (HARE), studied their transferability across tissues, and evaluated genomic prediction models within and across populations. HARE focuses on tightly linked cis acting causal variants in the immediate vicinity of the gene, while excluding trans effects from diffusion and metabolism. Therefore, HARE estimates were more transferrable across different tissues and populations compared to measured transcript expression. We also showed that HARE estimates captured one-third of the variation in gene expression. HARE estimates were used in genomic prediction models evaluated within and across two diverse maize panels–a diverse association panel (Goodman Association panel) and a large half-sib panel (Nested Association Mapping panel)–for predicting 26 complex traits. HARE resulted in up to 15% higher prediction accuracy than control approaches that preserved haplotype structure, suggesting that HARE carried functional information in addition to information about haplotype structure. The largest increase was observed when the model was trained in the Nested Association Mapping panel and tested in the Goodman Association panel. Additionally, HARE yielded higher within-population prediction accuracy as compared to measured expression values. The accuracy achieved by measured expression was variable across tissues, whereas accuracy by HARE was more stable across tissues. Therefore, imputing RNA expression of genes by haplotype is stable, cost-effective, and transferable across populations.


2020 ◽  
Vol 10 (8) ◽  
pp. 2629-2639
Author(s):  
Edna K. Mageto ◽  
Jose Crossa ◽  
Paulino Pérez-Rodríguez ◽  
Thanda Dhliwayo ◽  
Natalia Palacios-Rojas ◽  
...  

Zinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the world’s population. To study the potential of genomic selection (GS) for maize with increased Zn concentration, an association panel and two doubled haploid (DH) populations were evaluated in three environments. Three genomic prediction models, M (M1: Environment + Line, M2: Environment + Line + Genomic, and M3: Environment + Line + Genomic + Genomic x Environment) incorporating main effects (lines and genomic) and the interaction between genomic and environment (G x E) were assessed to estimate the prediction ability (rMP) for each model. Two distinct cross-validation (CV) schemes simulating two genomic prediction breeding scenarios were used. CV1 predicts the performance of newly developed lines, whereas CV2 predicts the performance of lines tested in sparse multi-location trials. Predictions for Zn in CV1 ranged from -0.01 to 0.56 for DH1, 0.04 to 0.50 for DH2 and -0.001 to 0.47 for the association panel. For CV2, rMP values ranged from 0.67 to 0.71 for DH1, 0.40 to 0.56 for DH2 and 0.64 to 0.72 for the association panel. The genomic prediction model which included G x E had the highest average rMP for both CV1 (0.39 and 0.44) and CV2 (0.71 and 0.51) for the association panel and DH2 population, respectively. These results suggest that GS has potential to accelerate breeding for enhanced kernel Zn concentration by facilitating selection of superior genotypes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Md. Abdullah Al Bari ◽  
Ping Zheng ◽  
Indalecio Viera ◽  
Hannah Worral ◽  
Stephen Szwiec ◽  
...  

Phenotypic evaluation and efficient utilization of germplasm collections can be time-intensive, laborious, and expensive. However, with the plummeting costs of next-generation sequencing and the addition of genomic selection to the plant breeder’s toolbox, we now can more efficiently tap the genetic diversity within large germplasm collections. In this study, we applied and evaluated genomic prediction’s potential to a set of 482 pea (Pisum sativum L.) accessions—genotyped with 30,600 single nucleotide polymorphic (SNP) markers and phenotyped for seed yield and yield-related components—for enhancing selection of accessions from the USDA Pea Germplasm Collection. Genomic prediction models and several factors affecting predictive ability were evaluated in a series of cross-validation schemes across complex traits. Different genomic prediction models gave similar results, with predictive ability across traits ranging from 0.23 to 0.60, with no model working best across all traits. Increasing the training population size improved the predictive ability of most traits, including seed yield. Predictive abilities increased and reached a plateau with increasing number of markers presumably due to extensive linkage disequilibrium in the pea genome. Accounting for population structure effects did not significantly boost predictive ability, but we observed a slight improvement in seed yield. By applying the best genomic prediction model (e.g., RR-BLUP), we then examined the distribution of genotyped but nonphenotyped accessions and the reliability of genomic estimated breeding values (GEBV). The distribution of GEBV suggested that none of the nonphenotyped accessions were expected to perform outside the range of the phenotyped accessions. Desirable breeding values with higher reliability can be used to identify and screen favorable germplasm accessions. Expanding the training set and incorporating additional orthogonal information (e.g., transcriptomics, metabolomics, physiological traits, etc.) into the genomic prediction framework can enhance prediction accuracy.


2020 ◽  
Vol 10 (3) ◽  
pp. 1113-1124 ◽  
Author(s):  
Madhav Bhatta ◽  
Lucia Gutierrez ◽  
Lorena Cammarota ◽  
Fernanda Cardozo ◽  
Silvia Germán ◽  
...  

Plant breeders regularly evaluate multiple traits across multiple environments, which opens an avenue for using multiple traits in genomic prediction models. We assessed the potential of multi-trait (MT) genomic prediction model through evaluating several strategies of incorporating multiple traits (eight agronomic and malting quality traits) into the prediction models with two cross-validation schemes (CV1, predicting new lines with genotypic information only and CV2, predicting partially phenotyped lines using both genotypic and phenotypic information from correlated traits) in barley. The predictive ability was similar for single (ST-CV1) and multi-trait (MT-CV1) models to predict new lines. However, the predictive ability for agronomic traits was considerably increased when partially phenotyped lines (MT-CV2) were used. The predictive ability for grain yield using the MT-CV2 model with other agronomic traits resulted in 57% and 61% higher predictive ability than ST-CV1 and MT-CV1 models, respectively. Therefore, complex traits such as grain yield are better predicted when correlated traits are used. Similarly, a considerable increase in the predictive ability of malting quality traits was observed when correlated traits were used. The predictive ability for grain protein content using the MT-CV2 model with both agronomic and malting traits resulted in a 76% higher predictive ability than ST-CV1 and MT-CV1 models. Additionally, the higher predictive ability for new environments was obtained for all traits using the MT-CV2 model compared to the MT-CV1 model. This study showed the potential of improving the genomic prediction of complex traits by incorporating the information from multiple traits (cost-friendly and easy to measure traits) collected throughout breeding programs which could assist in speeding up breeding cycles.


2019 ◽  
Vol 15 ◽  
pp. 117693431984002 ◽  
Author(s):  
Reka Howard ◽  
Diego Jarquin

Prediction techniques are important in plant breeding as they provide a tool for selection that is more efficient and economical than traditional phenotypic and pedigree based selection. The conventional genomic prediction models include molecular marker information to predict the phenotype. With the development of new phenomics techniques we have the opportunity to collect image data on the plants, and extend the traditional genomic prediction models where we incorporate diverse set of information collected on the plants. In our research, we developed a hybrid matrix model that incorporates molecular marker and canopy coverage information as a weighted linear combination to predict grain yield for the soybean nested association mapping (SoyNAM) panel. To obtain the testing and training sets, we clustered the individuals based on their marker and canopy information using 2 different clustering techniques, and we compared 5 different cross-validation schemes. The results showed that the predictive ability of the models was the highest when both the canopy and marker information was included, and it was the lowest when only the canopy information was included.


2018 ◽  
Author(s):  
Aditi Bhandari ◽  
Jérôme Bartholomé ◽  
Tuong-Vi Cao ◽  
Nilima Kumari ◽  
Julien frouin ◽  
...  

AbstractDeveloping high yielding rice varieties that are tolerant to drought stress is crucial for the sustainable livelihood of rice farmers in rainfed rice cropping ecosystems. Genomic selection (GS) promises to be an effective breeding option for these complex traits. We evaluated the effectiveness of two rather new options in the implementation of GS: trait and environment-specific marker selection and the use of multi-environment prediction models. A reference population of 280 rainfed lowland accessions endowed with 215k SNP markers data was phenotyped under a favorable and two managed drought environments. Trait-specific SNP subsets (28k) were selected for each trait under each environment, using results of GWAS performed with the complete genotype dataset. Performances of single-environment and multi-environment genomic prediction models were compared using kernel regression based methods (GBLUP and RKHS) under two cross validation scenario: availability (CV2) or not (CV1) of phenotypic data for the validation set, in one of the environments. The most realistic trait-specific marker selection strategy achieved predictive ability (PA) of genomic prediction was up to 22% higher than markers selected on the bases of neutral linkage disequilibrium (LD). Tolerance to drought stress was up to 32% better predicted by multi-environment models (especially RKHS based models) under CV2 strategy. Under the less favorable CV1 strategy, the multi-environment models achieved similar PA than the single-environment predictions. We also showed that reasonable PA could be obtained with as few as 3,000 SNP markers, even in a population of low LD extent, provided marker selection is based on pairwise LD. The implications of these findings for breeding for drought tolerance are discussed. The most resource sparing option would be accurate phenotyping of the reference population in a favorable environment and under a managed drought, while the candidate population would be phenotyped only under one of those environments.


Author(s):  
Seema Yadav ◽  
Xianming Wei ◽  
Priya Joyce ◽  
Felicity Atkin ◽  
Emily Deomano ◽  
...  

AbstractKey messageNon-additive genetic effects seem to play a substantial role in the expression of complex traits in sugarcane. Including non-additive effects in genomic prediction models significantly improves the prediction accuracy of clonal performance.AbstractIn the recent decade, genetic progress has been slow in sugarcane. One reason might be that non-additive genetic effects contribute substantially to complex traits. Dense marker information provides the opportunity to exploit non-additive effects in genomic prediction. In this study, a series of genomic best linear unbiased prediction (GBLUP) models that account for additive and non-additive effects were assessed to improve the accuracy of clonal prediction. The reproducible kernel Hilbert space model, which captures non-additive genetic effects, was also tested. The models were compared using 3,006 genotyped elite clones measured for cane per hectare (TCH), commercial cane sugar (CCS), and Fibre content. Three forward prediction scenarios were considered to investigate the robustness of genomic prediction. By using a pseudo-diploid parameterization, we found significant non-additive effects that accounted for almost two-thirds of the total genetic variance for TCH. Average heterozygosity also had a major impact on TCH, indicating that directional dominance may be an important source of phenotypic variation for this trait. The extended-GBLUP model improved the prediction accuracies by at least 17% for TCH, but no improvement was observed for CCS and Fibre. Our results imply that non-additive genetic variance is important for complex traits in sugarcane, although further work is required to better understand the variance component partitioning in a highly polyploid context. Genomics-based breeding will likely benefit from exploiting non-additive genetic effects, especially in designing crossing schemes. These findings can help to improve clonal prediction, enabling a more accurate identification of variety candidates for the sugarcane industry.


2021 ◽  
Vol 288 (1956) ◽  
pp. 20210693
Author(s):  
Suzanne E. McGaugh ◽  
Aaron J. Lorenz ◽  
Lex E. Flagel

Variation in complex traits is the result of contributions from many loci of small effect. Based on this principle, genomic prediction methods are used to make predictions of breeding value for an individual using genome-wide molecular markers. In breeding, genomic prediction models have been used in plant and animal breeding for almost two decades to increase rates of genetic improvement and reduce the length of artificial selection experiments. However, evolutionary genomics studies have been slow to incorporate this technique to select individuals for breeding in a conservation context or to learn more about the genetic architecture of traits, the genetic value of missing individuals or microevolution of breeding values. Here, we outline the utility of genomic prediction and provide an overview of the methodology. We highlight opportunities to apply genomic prediction in evolutionary genetics of wild populations and the best practices when using these methods on field-collected phenotypes.


2020 ◽  
Vol 10 (10) ◽  
pp. 3701-3708 ◽  
Author(s):  
Marcus T. Brock ◽  
Matthew J. Rubin ◽  
Dean DellaPenna ◽  
Cynthia Weinig

Linkage and association mapping populations are crucial public resources that facilitate the characterization of trait genetic architecture in natural and agricultural systems. We define a large nested association mapping panel (NAM) from 14 publicly available recombinant inbred line populations (RILs) of Arabidopsis thaliana, which share a common recurrent parent (Col-0). Using a genotype-by-sequencing approach (GBS), we identified single nucleotide polymorphisms (SNPs; range 563-1525 per population) and subsequently built updated linkage maps in each of the 14 RIL sets. Simulations in individual RIL populations indicate that our GBS markers have improved power to detect small effect QTL and enhanced resolution of QTL support intervals in comparison to original linkage maps. Using these robust linkage maps, we imputed a common set of publicly available parental SNPs into each RIL linkage map, generating overlapping markers across all populations. Though ultimately depending on allele frequencies at causal loci, simulations of the NAM panel suggest that surveying between 4 to 7 of the 14 RIL populations provides high resolution of the genetic architecture of complex traits, relative to a single mapping population.


2020 ◽  
Author(s):  
Edna K. Mageto ◽  
Jose Crossa ◽  
Paulino Pérez-Rodríguez ◽  
Thanda Dhliwayo ◽  
Natalia Palacios-Rojas ◽  
...  

ABSTRACTZinc (Zn) deficiency is a major risk factor for human health, affecting about 30% of the world’s population. To study the potential of genomic selection (GS) for maize with increased Zn concentration, an association panel and two doubled haploid (DH) populations were evaluated in three environments. Three genomic prediction models, M (M1: Environment + Line, M2: Environment + Line + Genomic, and M3: Environment + Line + Genomic + Genomic x Environment) incorporating main effects (lines and genomic) and the interaction between genomic and environment (G x E) were assessed to estimate the prediction ability (rMP) for each model. Two distinct cross-validation (CV) schemes simulating two genomic prediction breeding scenarios were used. CV1 predicts the performance of newly developed lines, whereas CV2 predicts the performance of lines tested in sparse multi-location trials. Predictions for Zn in CV1 ranged from −0.01 to 0.56 for DH1, 0.04 to 0.50 for DH2 and −0.001 to 0.47 for the association panel. For CV2, rMP values ranged from 0.67 to 0.71 for DH1, 0.40 to 0.56 for DH2 and 0.64 to 0.72 for the association panel. The genomic prediction model which included G x E had the highest average rMP for both CV1 (0.39 and 0.44) and CV2 (0.71 and 0.51) for the association panel and DH2 population, respectively. These results suggest that GS has potential to accelerate breeding for enhanced kernel Zn concentration by facilitating selection of superior genotypes.


Sign in / Sign up

Export Citation Format

Share Document