scholarly journals Lupus Gut Microbiota Transplants Cause Autoimmunity and Inflammation

2021 ◽  
Author(s):  
Yiyangzi Ma ◽  
Ruru Guo ◽  
Yiduo Sun ◽  
Xin Li ◽  
Lun He ◽  
...  

Background: The etiology of systemic lupus erythematosus (SLE) is multifactorial. Recently, growing evidence suggests that the microbiota plays a role in SLE, yet whether gut microbiota participates in the development of SLE remains largely unknown. To investigate this issue, we carried out 16s rDNA sequencing analyses in a cohort of 18 female un-treated active SLE patients and 7 female healthy controls, and performed fecal microbiota transplantation from patients and healthy controls to germ-free mice. Results: Compared to the healthy controls, we found no significant different microbial diversity but some significantly different species in SLE patients including Turicibacter genus and other 5 species. Fecal transfer from SLE patients to germ free (GF) C57BL/6 mice caused GF mice to develop a series of lupus-like phenotyptic features, which including an increased serum autoimmune antibodies, and imbalanced cytokines, altered distribution of immune cells in mucosal and peripheral immune response, and upregulated expression of genes related to SLE in recipient mice that received SLE fecal microbiota transplantation (FMT). Moreover, the metabolism of histidine was significantly altered in GF mice treated with SLE patient feces, as compared to those which received healthy fecal transplants. Conclusions: Overall, our results describe a causal role of aberrant gut microbiota in contributing to the pathogenesis of SLE. The interplay of gut microbial and histidine metabolism may be one of the mechanisms intertwined with autoimmune activation in SLE.

2020 ◽  
Vol 318 (6) ◽  
pp. E965-E980 ◽  
Author(s):  
Arianne Morissette ◽  
Camille Kropp ◽  
Jean-Philippe Songpadith ◽  
Rafael Junges Moreira ◽  
Janice Costa ◽  
...  

Blueberry consumption can prevent obesity-linked metabolic diseases, and it has been proposed that the polyphenol content of blueberries may contribute to these effects. Polyphenols have been shown to favorably impact metabolic health, but the role of specific polyphenol classes and whether the gut microbiota is linked to these effects remain unclear. We aimed to evaluate the impact of whole blueberry powder and blueberry polyphenols on the development of obesity and insulin resistance and to determine the potential role of gut microbes in these effects by using fecal microbiota transplantation (FMT). Sixty-eight C57BL/6 male mice were assigned to one of the following diets for 12 wk: balanced diet (Chow); high-fat, high-sucrose diet (HFHS); or HFHS supplemented with whole blueberry powder (BB), anthocyanidin (ANT)-rich extract, or proanthocyanidin (PAC)-rich extract. After 8 wk, mice were housed in metabolic cages, and an oral glucose tolerance test (OGTT) was performed. Sixty germ-free mice fed HFHS diet received FMT from one of the above groups biweekly for 8 wk, followed by an OGTT. PAC-treated mice were leaner than HFHS controls although they had the same energy intake and were more physically active. This observation was reproduced in germ-free mice receiving FMT from PAC-treated mice. PAC- and ANT-treated mice showed improved insulin responses during OGTT, and this finding was also reproduced in germ-free mice following FMT. These results show that blueberry PAC and ANT polyphenols can reduce diet-induced body weight and improve insulin sensitivity and that at least part of these beneficial effects are explained by modulation of the gut microbiota.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Umair Shabbir ◽  
Muhammad Sajid Arshad ◽  
Aysha Sameen ◽  
Deog-Hwan Oh

The gut microbiota (GM) represents a diverse and dynamic population of microorganisms and about 100 trillion symbiotic microbial cells that dwell in the gastrointestinal tract. Studies suggest that the GM can influence the health of the host, and several factors can modify the GM composition, such as diet, drug intake, lifestyle, and geographical locations. Gut dysbiosis can affect brain immune homeostasis through the microbiota–gut–brain axis and can play a key role in the pathogenesis of neurodegenerative diseases, including dementia and Alzheimer’s disease (AD). The relationship between gut dysbiosis and AD is still elusive, but emerging evidence suggests that it can enhance the secretion of lipopolysaccharides and amyloids that may disturb intestinal permeability and the blood–brain barrier. In addition, it can promote the hallmarks of AD, such as oxidative stress, neuroinflammation, amyloid-beta formation, insulin resistance, and ultimately the causation of neural death. Poor dietary habits and aging, along with inflammatory responses due to dysbiosis, may contribute to the pathogenesis of AD. Thus, GM modulation through diet, probiotics, or fecal microbiota transplantation could represent potential therapeutics in AD. In this review, we discuss the role of GM dysbiosis in AD and potential therapeutic strategies to modulate GM in AD.


Biomedicines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 145
Author(s):  
Julio Plaza-Díaz ◽  
Patricio Solis-Urra ◽  
Jerónimo Aragón-Vela ◽  
Fernando Rodríguez-Rodríguez ◽  
Jorge Olivares-Arancibia ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).


2016 ◽  
Vol 206 ◽  
pp. 66-72 ◽  
Author(s):  
Jian-Lei Gu ◽  
Yi-Zhong Wang ◽  
Shi-Yi Liu ◽  
Guang-Jun Yu ◽  
Ting Zhang ◽  
...  

2020 ◽  
Vol 3 (Supplement_1) ◽  
pp. 137-138
Author(s):  
X Bai ◽  
G De Palma ◽  
J Lu ◽  
S M Collins ◽  
P Bercik

Abstract Background Increasing evidence suggests that gut microbiota play a key role in gastrointestinal (GI) tract function. We have previously shown that fecal microbiota transplantation diarrhea predominant IBS patients into germ-free mice induces faster GI transit, increased permeability and innate immune activation. However, it is unknown whether gut dysfunction is induced by microbiota from patients with chronic constipation. Aims Here, we investigated the role of the intestinal microbiota in the expression of severe slow transit constipation in a patient with previous C difficile infection and extensive antibiotic exposure. Methods Germ-free (GF) mice (14 weeks old) were gavaged with diluted fecal content from the patient with constipation (PA) or a sex and age-matched healthy control (HC). 12 weeks later, we assessed gut motility and GI transit using videofluoroscopy and a bead expulsion test.. We then investigated intestinal and colonic smooth muscle isometric contraction in vitro using electric field stimulation (EFS), and acetylcholine (Ach) release was assessed by superfusion using [3H] choline. Histological changes were evaluated by H&E and immunohistochemistry. Results Mice with PA microbiota had faster whole GI transit (score 18.9 ± 0.9 (N=9) than mice with HC microbiota (15.4 ± 1.0, N=10, p=0.032), with markers located mainly in the distal small bowel and cecum. However, bead expulsion from the colon was significantly longer in PA mice (420.8 s ± 124.6 s, N=9) than in HC mice (82.6 s ± 20.0 s, N=10, p=0.026). This delayed colonic transit was likely due to colonic retroperistalsis visualized videofluoroscopically by retrograde flow of barium in the right colon of PA mice. There was no difference between the two groups in small intestinal or colonic tissues in Ach release or contractility induced by carbachol or KCl,. EFS caused transient biphasic relaxation and contraction in small intestine and colon, with the colonic contraction being stronger in the PA group. Microscopic tissue analysis showed disruption of the interstitial cells of Cajal (ICC) network and increased lymphocyte infiltration in colonic mucosa and submucosa in PA mice. Conclusions These results indicate that the microbiota is a driver of delayed colonic transit in a patient whose constipation started following extensive antibiotic exposure for C. difficile infection. The observed dysmotility pattern was not due to lower muscle contractility but likely caused by immune mediated changes in the ICC network. Funding Agencies CIHR


2019 ◽  
Vol 20 (18) ◽  
pp. 4584 ◽  
Author(s):  
Romain Villéger ◽  
Amélie Lopès ◽  
Guillaume Carrier ◽  
Julie Veziant ◽  
Elisabeth Billard ◽  
...  

Recently, preclinical and clinical studies targeting several types of cancer strongly supported the key role of the gut microbiota in the modulation of host response to anti-tumoral therapies such as chemotherapy, immunotherapy, radiotherapy and even surgery. Intestinal microbiome has been shown to participate in the resistance to a wide range of anticancer treatments by direct interaction with the treatment or by indirectly stimulating host response through immunomodulation. Interestingly, these effects were described on colorectal cancer but also in other types of malignancies. In addition to their role in therapy efficacy, gut microbiota could also impact side effects induced by anticancer treatments. In the first part of this review, we summarized the role of the gut microbiome on the efficacy and side effects of various anticancer treatments and underlying mechanisms. In the second part, we described the new microbiota-targeting strategies, such as probiotics and prebiotics, antibiotics, fecal microbiota transplantation and physical activity, which could be effective adjuvant therapies developed in order to improve anticancer therapeutic efficiency.


2019 ◽  
Vol 28 (12) ◽  
pp. 1507-1527 ◽  
Author(s):  
Giovanni Schepici ◽  
Serena Silvestro ◽  
Placido Bramanti ◽  
Emanuela Mazzon

Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and degenerative disease that affects the central nervous system. A recent study showed that interaction between the immune system and the gut microbiota plays a crucial role in the development of MS. This review reports the clinical studies carried out in recent years that aimed to evaluate the composition of the microbiota in patients with relapsing–remitting MS (RR-MS). We also report what is available in the literature regarding the effectiveness of fecal microbiota transplantation and the role of the diet in restoring the intestinal bacterial population. Studies report that patients with RR-MS have a microbiota that, compared with healthy controls, has higher amounts of Pedobacteria, Flavobacterium, Pseudomonas, Mycoplana, Acinetobacter, Eggerthella, Dorea, Blautia, Streptococcus and Akkermansia. In contrast, MS patients have a microbiota with impoverished microbial populations of Prevotella, Bacteroides, Parabacteroides, Haemophilus, Sutterella, Adlercreutzia, Coprobacillus, Lactobacillus, Clostridium, Anaerostipes and Faecalibacterium. In conclusion, the restoration of the microbial population in patients with RR-MS appears to reduce inflammatory events and the reactivation of the immune system.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Marian A. Gerges ◽  
Noura E. Esmaeel ◽  
Wafaa K. Makram ◽  
Doaa M. Sharaf ◽  
Manar G. Gebriel

Background. Dysbiosis of gut microbiota could promote autoimmune disorders including systemic lupus erythematosus (SLE). Clarifying this point would be of great importance in understanding the pathogenesis and hence the development of new strategies for SLE treatment. Aim. This study aimed to determine the fecal microbiota profile in newly diagnosed SLE patients compared to healthy subjects and to investigate the correlation of this profile with disease activity. Methods. Newly diagnosed SLE patients who fulfilled at least four of the American College of Rheumatology (ACR) criteria were enrolled during the study period. Patients with lupus were matched to healthy subjects. SLE activity was evaluated using the Systemic Lupus Disease Activity Index (SLEDAI-2K). Fresh fecal samples were collected from each subject. Genomic DNA was extracted from fecal samples. Quantitative real-time PCR was applied for quantitation of Firmicutes phylum, Bacteroidetes phylum, and Lactobacillus genus in comparison to the total fecal microbiota. Results of patients’ samples were compared to those of healthy subjects and were correlated to patients’ SLEDAI-2K score. Results. Twenty SLE patients’ samples were compared with 20 control samples. There was a significant alteration in SLE patients’ gut microbiota. A significantly lower ( p ≤ 0.001 ) Firmicutes/Bacteroidetes (F/B) ratio in SLE patients (mean ratio: 0.66%) compared to healthy subjects (mean ratio: 1.79%) was found. Lactobacillus showed a significant decrease in SLE patients ( p = 0.006 ) in comparison to healthy controls. An inverse significant correlation between SLEDAI-2K scores for disease activity and F/B ratio (r = −0.451; p = 0.04 ) was found. However, an inverse nonsignificant correlation between SLEDAI-2K scores for disease activity and Lactobacillus (r = −0.155; p = 0.51 ) was detected. Conclusion. Compared to healthy controls, recently diagnosed SLE Egyptian patients have an altered fecal microbiota profile with significant lowering of both F/B ratio and Lactobacillus abundance, which is weakly correlated with disease activity.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Mingzhu Wang ◽  
Zhengyang Zhu ◽  
Xiaoying Lin ◽  
Haichang Li ◽  
Chengping Wen ◽  
...  

Abstract Background Growing evidences indicate that the alterations in gut microbiota are associated with the efficacy of glucocorticoids (GCs) in the treatment of systemic lupus erythematosus (SLE). However, there is no evidence to prove whether gut microbiota directly mediates the effects of GCs. Methods Using the MRL/lpr mice, this study firstly addressed the effects of three doses of prednisone on gut microbiota. Then, this study used fecal microbiota transplantation (FMT) to transfer the gut microbiota of prednisone-treated MRL/lpr mice into the blank MRL/lpr mice to reveal whether the gut microbiota regulated by prednisone had similar therapeutic efficiency and side effects as prednisone. Results The effects of prednisone on gut microbiota were dose-dependent in the treatment of MRL/lpr mice. After transplantation into MRL/lpr mice, prednisone-regulated gut microbiota could alleviate lupus, which might be due to decreasing Ruminococcus and Alistipes and retaining the abundance of Lactobacillus. However, prednisone-regulated gut microbiota did not exhibit side effects as prednisone. The reason might be that the pathogens upregulated by prednisone could not survive in the MRL/lpr mice as exogenous microbiota, such as Parasutterella, Parabacteroides, and Escherichia-Shigella. Conclusions These data demonstrated that the transplantation of gut microbiota may be an effective method to obtain the therapeutic effects of GCs and avoid the side effects of GCs.


2021 ◽  
Author(s):  
Suyan Li ◽  
Fenyan Zhang ◽  
Yiguang Lin ◽  
Xiaoli Niu ◽  
Jian Lv ◽  
...  

Abstract Background Accumulating evidence suggests that the intestinal flora is involved in many neurodegenerative diseases. Sepsis can lead to severe intestinal flora imbalance and brain dysfunction. In this study, we investigated Sennoside A may relieve lipopolysaccharide(LPS)-associated encephalopathy via its effect on the gut microbiota in rats. Methods Adult male Sprague-Dawley (SD) rats and germ free (GF) rats were used. The ordinary and germ free SD rats were adopted as a LPS-associated encephalopathy model with or without Sennoside A administration. We investigated gut microbiota diversity and structure, conducted electroencephalograms (EEG) and measured the levels of TNF-α, IL-1β and IL-6 in the cortexes of Sprague Dawley (SD) rats with or without Sennoside A administration. Horizontal fecal microbiota transplantation (FMT) and germ-free rats were used to confirm the important roles of gut microbiota in the mitigation of LPS-associated encephalopathy in rats after Sennoside A supplementation. Results We found that Sennoside A treatment markedly improved brain function in septic rats including decreased ratios of abnormal EEG and lowered levels of TNF-α, IL-1β, and IL-6 in the rat cortexes. While the gut microbiota changed in septic SD rats, Sennoside A improved gut microbial composition, which might mediate its brain protective effects in sepsis. Sennoside A also reduced inflammation in the cortexes of septic rats via gut microbiota improvement. In germ-free rats that received lipopolysaccharide(LPS),Sennoside A could not lower the ratios of abnormal EEG, and could not alleviate TNF-α, IL-1β, and IL-6 levels in the rats’ cortexes. FMT lowered the ratios of abnormal EEG and alleviate TNF-α, IL-1β, and IL-6 levels in rats’ cortexes, which confirmed our hypothesis that the effect of Sennoside A on the improvement of LPS-associated encephalopathy through gut microbiota. Conclusion Our data confirm our hypothesis that Sennoside A likely exerts its brain protective effects through gut microbiota alteration.


Sign in / Sign up

Export Citation Format

Share Document