scholarly journals Polygalacturonase production enhancement by Piriformospora indica from sugar beet pulp under submerged fermentation using surface methodology

2021 ◽  
Author(s):  
Somayyeh Kiani ◽  
Parisa Fathi Rezaei ◽  
Sina Jamalzadegan

This study proposed a novel and cost-effective approach to enhance and optimize the polygalacturonase from P. indica. In current investigation, the impact of ammonium sulfate, sugar beet pulp (SBP) and glucose as variables on induction of polygalacturonase from P. indica was optimized using the central composite design (CCD) of response surface methodology (RSM) under SmF. Additionally, partial polygalacturonase purification and in situ analysis were performed. The optimal reaction conditions, which resulted in the highest enzyme activity were observed as the following conditions: ammonium sulfate (4 g/L), SBP (20 g/L), glucose (60 g/L). Under the optimized condition, the maximum enzyme activity reached to 19.4 U/ml (127 U/mg) which increased by 5.84 times compared to non-optimized conditions. The partial purified polygalacturonase molecular weight was estimated 60 KDa. In line with the bioinformatic analysis, exo-polygalacturonase sequence of P. indica showed similarity with Rhizoctonia solani′s and Thanateporus cucumeris. These results indicated that SBP act as a cheap and suitable inducer of polygalacturonase production by P. indica in a submerged cultivation. The outcome of this study will be useful for industries to decrease environmental pollution with cost-effective approaches.

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2531
Author(s):  
Rodion Kopitzky

Sugar beet pulp (SBP) is a residue available in large quantities from the sugar industry, and can serve as a cost-effective bio-based and biodegradable filler for fully bio-based compounds based on bio-based polyesters. The heterogeneous cell structure of sugar beet suggests that the processing of SBP can affect the properties of the composite. An “Ultra-Rotor” type air turbulence mill was used to produce SBP particles of different sizes. These particles were processed in a twin-screw extruder with poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) and fillers to granules for possible marketable formulations. Different screw designs, compatibilizers and the use of glycerol as a thermoplasticization agent for SBP were also tested. The spherical, cubic, or ellipsoidal-like shaped particles of SBP are not suitable for usage as a fiber-like reinforcement. In addition, the fineness of ground SBP affects the mechanical properties because (i) a high proportion of polar surfaces leads to poor compatibility, and (ii) due to the inner structure of the particulate matter, the strength of the composite is limited to the cohesive strength of compressed sugar-cell compartments of the SBP. The compatibilization of the polymer–matrix–particle interface can be achieved by using compatibilizers of different types. Scanning electron microscopy (SEM) fracture patterns show that the compatibilization can lead to both well-bonded particles and cohesive fracture patterns in the matrix. Nevertheless, the mechanical properties are limited by the impact and elongation behavior. Therefore, the applications of SBP-based composites must be well considered.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5493
Author(s):  
Anna Strąkowska ◽  
Sylwia Członka ◽  
Agnė Kairytė

Rigid polyurethane (PUR) foams were reinforced with sugar beet pulp (BP) impregnated with Aminopropylisobutyl-polyhedral oligomeric silsesquioxanes (APIB-POSS). BP filler was incorporated into PUR at different percentages—1, 2, and 5 wt.%. The impact of BP filler on morphology features, mechanical performances, and thermal stability of PUR was examined. The results revealed that the greatest improvement in physico-mechanical properties was observed at lower concentrations (1 and 2 wt.%) of BP filler. For example, when compared with neat PUR foams, the addition of 2 wt.% of BP resulted in the formation of PUR composite foams with increased compressive strength (~12%), greater flexural strength (~12%), and better impact strength (~6%). The results of thermogravimetric analysis (TGA) revealed that, due to the good thermal stability of POSS-impregnated BP filler, the reinforced PUR composite foams were characterized by better thermal stability—for example, by increasing the content of BP filler up to 5 wt.%, the mass residue measured at 600 °C increased from 29.0 to 31.9%. Moreover, the addition of each amount of filler resulted in the improvement of fire resistance of PUR composite foams, which was determined by measuring the value of heat peak release (pHRR), total heat release (THR), total smoke release (TSR), limiting oxygen index (LOI), and the amount of carbon monoxide (CO) and carbon dioxide (CO2) released during the combustion. The greatest improvement was observed for PUR composite foams with 2 wt.% of BP filler. The results presented in the current study indicate that the addition of a proper amount of POSS-impregnated BP filler may be an effective approach to the synthesis of PUR composites with improved physico-mechanical properties. Due to the outstanding properties of PUR composite foams reinforced with POSS-impregnated BP, such developed materials may be successfully used as thermal insulation materials in the building and construction industry.


2019 ◽  
pp. 338-345
Author(s):  
Ida Zahovic ◽  
Zorana Roncevic ◽  
Jovana Grahovac ◽  
Sinisa Dodic ◽  
Aleksandar Jokic ◽  
...  

This study is concerned with the effect of different cultivation techniques on enzymes production from sugar beet pulp by strain Neurospora crassa isolated from the environment. Cultivation of selected producing microorganism was carried out under the same process conditions using five techniques. Bioprocess efficacy was estimated based on amylolytic, cellulolytic and xylanolytic activity of prepared enzymes mixtures. The obtained results indicate that the selection of cultivation technique had a statistically significant effect on the production of examined hydrolytic enzymes. It was confirmed that solid state cultivation with spontaneous aeration is the best cultivation technique for the production of amylolytic, cellulolytic and xylanolytic enzymes from sugar beet pulp by Neurospora crassa. Submerged cultivation of producing strain with spontaneous aeration resulted in the lowest production of all investigated enzymes under applied experimental conditions. The obtained results are the basis for further research aimed to increase the enzymes yield and activity of their mixture.


2003 ◽  
Vol 2003 ◽  
pp. 98-98
Author(s):  
D. G. Chapple ◽  
K. P. A. Wheeler ◽  
M.W. Witt ◽  
W. E. Blackburn

Feeding lowland sheep on straw-based systems during pregnancy is practised on many livestock/arable farms. Simple mixes of molassed sugar beet feed and distillers dark grains have been cost effective supplements for March-lambing ewes fed straw and produced satisfactory ewe and lamb performance (Chappleet al., 1998 and 2001). An ensiled mix of pressed sugar beet pulp and dried maize distillers grains (Praize, Trident Feeds) has been fed as the sole diet for finishing lambs (Pattinsonet al., 2001) but there is little information on feeding Praize to pregnant ewes. The objective of this study was to compare ewe and lamb performance when March-lambing ewes were fed on a straw-based system and supplemented with either a cereal/protein home-mix, Praize or one of two dried sugar beet pulp/protein mixes.


Author(s):  
Shamsan A. Al-Mowallad ◽  
Moneera O. Aljobair ◽  
Amal N. Alkuraieef ◽  
Amani H. Aljahani ◽  
Amnah M. Alsuhaibani ◽  
...  

Author(s):  
S.V. Meshcheryakov ◽  
◽  
I.S. Eremin ◽  
D.O. Sidorenko ◽  
M.S. Kotelev ◽  
...  
Keyword(s):  

2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


Sign in / Sign up

Export Citation Format

Share Document