scholarly journals Photothermal Dye-based Subcellular-sized Heat Spot Enabling the Modulation of Local Cellular Activities

2021 ◽  
Author(s):  
Ferdinandus Ferdinandus ◽  
Madoka Suzuki ◽  
Yoshie Harada ◽  
Satya Ranjan Sarker ◽  
Shin ichi Ishiwata ◽  
...  

Thermal engineering at microscale such as the control and measurement of temperature is a key technology in basic biological research and biomaterials development, which remains challenge yet. Here, we engineered the polymeric nanoparticle, in which a fluorescent temperature sensory dye and a photothermal dye were embedded in its polymer matrices, termed nanoHT. When a near infrared laser at 808 nm is illuminated to the particle, it enables to create the subcellular-sized heat spot in a live cell, where fluorescence thermometry allows the read out of the temperature increment concurrently at individual heat spots. Owing to the controlled local heating, we found that the cell death of HeLa cells was induced at the certain temperature at rate of a few seconds. It should be also noted that the cell death was triggered from the very local heat spot at subcellular level. Furthermore, nanoHT was applied for the induction of muscle contraction of the C2C12 myotube by heat. We successfully showed that the heat-induced contraction took place at the limited area of a single myotube according to the alteration of protein-protein interactions related to the contraction event. These studies demonstrated that even a single heat spot provided by a photothermal material could be very effective in altering cellular functions, paving the way for novel photothermal therapies.

1996 ◽  
Vol 132 (3) ◽  
pp. 359-370 ◽  
Author(s):  
E F Smith ◽  
P A Lefebvre

Several studies have indicated that the central pair of microtubules and their associated structures play a significant role in regulating flagellar motility. To begin a molecular analysis of these components we have generated central apparatus-defective mutants in Chlamydomonas reinhardtii using insertional mutagenesis. One paralyzed mutant recovered in our screen, D2, is an allele of a previously identified mutant, pf16. Mutant cells have paralyzed flagella, and the C1 microtubule of the central apparatus is missing in isolated axonemes. We have cloned the wild-type PF16 gene and confirmed its identity by rescuing pf16 mutants upon transformation. The rescued pf16 cells were wild-type in motility and in axonemal ultrastructure. A full-length cDNA clone for PF16 was obtained and sequenced. Database searches using the predicted 566 amino acid sequence of PF16 indicate that the protein contains eight contiguous armadillo repeats. A number of proteins with diverse cellular functions also contain armadillo repeats including pendulin, Rch1, importin, SRP-1, and armadillo. An antibody was raised against a fusion protein expressed from the cloned cDNA. Immunofluorescence labeling of wild-type flagella indicates that the PF16 protein is localized along the length of the flagella while immunogold labeling further localizes the PF16 protein to a single microtubule of the central pair. Based on the localization results and the presence of the armadillo repeats in this protein, we suggest that the PF16 gene product is involved in protein-protein interactions important for C1 central microtubule stability and flagellar motility.


2002 ◽  
Vol 2 ◽  
pp. 1569-1578 ◽  
Author(s):  
David J. Granville ◽  
Roberta A. Gottlieb

The past 5 years has seen an intense surge in research devoted toward understanding the critical role of mitochondria in the regulation of cell death. Apoptosis can be initiated by a wide array of stimuli, inducing multiple signaling pathways that, for the most part, converge at the mitochondrion. Although classically considered the powerhouses of the cell, it is now understood that mitochondria are also “gatekeepers” that ultimately determine the fate of the cell. The mitochondrial decision as to whether a cell lives or dies is complex, involving protein-protein interactions, ionic changes, reactive oxygen species, and other mechanisms that require further elucidation. Once the death process is initiated, mitochondria undergo conformational changes, resulting in the release of cytochrome c (cyt c), caspases, endonucleases, and other factors leading to the onset and execution of apoptosis. The present review attempts to outline the complex milieu of events regulating the mitochondrial commitment to and processes involved in the implementation of the executioner phase of apoptotic cell death.


Cancers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1579 ◽  
Author(s):  
Ainsley Mike Antao ◽  
Apoorvi Tyagi ◽  
Kye-Seong Kim ◽  
Suresh Ramakrishna

Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.


2019 ◽  
Vol 167 (3) ◽  
pp. 225-231 ◽  
Author(s):  
Takumi Koshiba ◽  
Hidetaka Kosako

Abstract Protein–protein interactions are essential biologic processes that occur at inter- and intracellular levels. To gain insight into the various complex cellular functions of these interactions, it is necessary to assess them under physiologic conditions. Recent advances in various proteomic technologies allow to investigate protein–protein interaction networks in living cells. The combination of proximity-dependent labelling and chemical cross-linking will greatly enhance our understanding of multi-protein complexes that are difficult to prepare, such as organelle-bound membrane proteins. In this review, we describe our current understanding of mass spectrometry-based proteomics mapping methods for elucidating organelle-bound membrane protein complexes in living cells, with a focus on protein–protein interactions in mitochondrial subcellular compartments.


2010 ◽  
Vol 1257 ◽  
Author(s):  
Zhitao Kang ◽  
Jie Xu ◽  
Dinal Andreasen ◽  
Brent Karl Wagner

AbstractQuantum Dots (QDs) bound to gold nanoparticles have shown photoluminescence (PL) quenching dependent on distance between the two particles. The incident light from the QD couples to plasmon excitation of the metal when the frequencies of the light and the surface plasmon resonance (SPR) coincide, leading to a reduction in emitted PL in the system. The quenching effect of gold nanoparticles on QDs was used to study protein-protein interactions with the potential for drug screening applications. CdTe and CdHgTe QDs with emission wavelengths from 500˜900nm were synthesized and gold nanospheres and nanorods with controlled absorption in the visible and near-infrared (NIR) wavelength regions were prepared. The PL quenching of QD-Protein-Protein-Au complexes was studied as a function of Au concentration, QD size and protein type. A quenching efficiency of up to 90% was observed. The QD-Au complexes were also studied for electric potential sensing. The surface of the QDs was negatively charged due to thiol ligands capping. By applying a positive potential on the gold or gold nanoparticle attached substrate, the local electric field between the substrate and the statically charged QDs would pull the QDs closer to the gold surface and quench the QD PL. PL quenching of QD with Au was studied as a function of electric signal and QD type. In this methodology, electric signals were effectively converted to optical signals.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Jutta Keicher ◽  
Nina Jaspert ◽  
Katrin Weckermann ◽  
Claudia Möller ◽  
Christian Throm ◽  
...  

Eukaryotic 14-3-3 proteins have been implicated in the regulation of diverse biological processes by phosphorylation-dependent protein-protein interactions. The Arabidopsis genome encodes two groups of 14-3-3s, one of which – epsilon – is thought to fulfill conserved cellular functions. Here, we assessed the in vivo role of the ancestral 14-3-3 epsilon group members. Their simultaneous and conditional repression by RNA interference and artificial microRNA in seedlings led to altered distribution patterns of the phytohormone auxin and associated auxin transport-related phenotypes, such as agravitropic growth. Moreover, 14-3-3 epsilon members were required for pronounced polar distribution of PIN-FORMED auxin efflux carriers within the plasma membrane. Defects in defined post-Golgi trafficking processes proved causal for this phenotype and might be due to lack of direct 14-3-3 interactions with factors crucial for membrane trafficking. Taken together, our data demonstrate a fundamental role for the ancient 14-3-3 epsilon group members in regulating PIN polarity and plant development.


2021 ◽  
Author(s):  
Shengya Cao ◽  
Nadia Martinez-Martin

Technological improvements in unbiased screening have accelerated drug target discovery. In particular, membrane-embedded and secreted proteins have gained attention because of their ability to orchestrate intercellular communication. Dysregulation of their extracellular protein–protein interactions (ePPIs) underlies the initiation and progression of many human diseases. Practically, ePPIs are also accessible for modulation by therapeutics since they operate outside of the plasma membrane. Therefore, it is unsurprising that while these proteins make up about 30% of human genes, they encompass the majority of drug targets approved by the FDA. Even so, most secreted and membrane proteins remain uncharacterized in terms of binding partners and cellular functions. To address this, a number of approaches have been developed to overcome challenges associated with membrane protein biology and ePPI discovery. This chapter will cover recent advances that use high-throughput methods to move towards the generation of a comprehensive network of ePPIs in humans for future targeted drug discovery.


2016 ◽  
Author(s):  
Xiaotong Yao ◽  
Shuvadeep Maity ◽  
Shashank Gandhi ◽  
Marcin Imielenski ◽  
Christine Vogel

AbstractPost-translational modifications by the Small Ubiquitin-like Modifier (SUMO) are essential for diverse cellular functions. Large-scale experiment and sequence-based predictions have identified thousands of SUMOylated proteins. However, the overlap between the datasets is small, suggesting many false positives with low functional relevance. Therefore, we integrated ~800 sequence features and protein characteristics such as cellular function and protein-protein interactions in a machine learning approach to score likely functional SUMOylation events (iSUMO). iSUMO is trained on a total of 24 large-scale datasets, and it predicts 2,291 and 706 SUMO targets in human and yeast, respectively. These estimates are five times higher than what existing sequence-based tools predict at the same 5% false positive rate. Protein-protein and protein-nucleic acid interactions are highly predictive of protein SUMOylation, supporting a role of the modification in protein complex formation. We note the marked prevalence of SUMOylation amongst RNA-binding proteins. We validate iSUMO predictions by experimental or other evidence. iSUMO therefore represents a comprehensive tool to identify high-confidence, functional SUMOylation events for human and yeast.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 782 ◽  
Author(s):  
Virja Mehta ◽  
Laura Trinkle-Mulcahy

Protein-protein interactions (PPIs) underlie most, if not all, cellular functions. The comprehensive mapping of these complex networks of stable and transient associations thus remains a key goal, both for systems biology-based initiatives (where it can be combined with other ‘omics’ data to gain a better understanding of functional pathways and networks) and for focused biological studies. Despite the significant challenges of such an undertaking, major strides have been made over the past few years. They include improvements in the computation prediction of PPIs and the literature curation of low-throughput studies of specific protein complexes, but also an increase in the deposition of high-quality data from non-biased high-throughput experimental PPI mapping strategies into publicly available databases.


Sign in / Sign up

Export Citation Format

Share Document