scholarly journals Aging impairs primary task resumption and attentional control processes following interruptions

2021 ◽  
Author(s):  
Marlene Roesner ◽  
Bianca Zickerick ◽  
Melinda Sabo ◽  
Daniel Schneider

Attentional selection of working memory content is impaired after an interruption. This effect was shown to increase with age. Here we investigate how electrophysiological mechanisms underlying attentional selection within working memory differ during primary task resumption between younger and older adults. Participants performed a working memory task, while be-ing frequently interrupted with either a cognitively low- or high-demanding arithmetic task. Afterwards, a retrospective cue (retro-cue) indicated the working memory content required for later report. The detrimental effect of the interruption was evident in both age groups, but while younger adults were more strongly affected by a high- than by a low-demanding inter-ruption, the performance deficit appeared independently of the cognitive requirements of the interruption task in older adults. A similar pattern was found regarding frontal-posterior con-nectivity in the theta frequency range, suggesting that aging decreases the ability to selectively maintain relevant information within working memory. The power of mid-frontal theta oscilla-tions (4-7 Hz) featured a comparable effect of interruptions in both age groups. However, pos-terior alpha power (8-14 Hz) following the retro-cue was more diminished by a preceding in-terruption in older adults. These results suggest an age-related deficit in the attentional selec-tion and maintenance of primary task information following an interruption that appeared in-dependent from the cognitive requirements of the interrupting task.

2021 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Nigel Rogasch ◽  
John Semmler ◽  
Mitchell Goldsworthy

Both selective attention and visual working memory (WM) performance are vulnerable to age related decline. Older adults perform worse on, and are less able to modulate oscillatory power in the alpha frequency range (8-12 Hz) than younger adults in WM tasks involving predictive cues about ‘where’ or ‘when’ a stimulus will be present. However, no study has investigated whether alpha power is modulated by cues predicting ‘how long’ an encoding duration will be. To test this, we recorded electroencephalography (EEG) while 24 younger (aged 18-33 years) and 23 older (aged 60-77 years) adults completed a modified delay match-to-sample task where participants were cued to the duration (either 0.1 s or 0.5 s) of an encoding stimulus consisting of 4 coloured squares. We found: (1) predictive cues increased WM capacity, but long encoding duration trials led to reduced WM capacity in both age groups, compared to short encoding duration trials; (2) no evidence for differences in preparatory alpha power between predictive and neutral cues for either short or long encoding durations, but preparatory alpha suppression was weaker in older adults; (3) retention period oscillatory power differed between short and long encoding duration trials, but these differences were no longer present when comparing the trial types from the onset of the encoding stimulus; and (4) oscillatory power in the preparatory and retention periods were not related to task performance. Our results suggest that preparatory alpha power is not modulated by predictive cues towards encoding duration during visual WM, however, reductions in alpha/beta oscillatory power during visual WM retention may be linked to the encoding stimulus, rather than a process specific to WM retention.


2019 ◽  
Author(s):  
Sabrina Sghirripa ◽  
Lynton Graetz ◽  
Ashley Merkin ◽  
Nigel C Rogasch ◽  
John G Semmler ◽  
...  

AbstractWorking memory (WM) is vulnerable to age-related decline, particularly under high loads. Visual alpha oscillations contribute to WM performance in younger adults, and although alpha decreases in power and frequency with age, it is unclear if alpha activity supports WM in older adults. We recorded electroencephalography (EEG) while 24 younger (aged 18-35 years) and 30 older (aged 50-86) adults performed a modified Sternberg task with varying load conditions. Older adults demonstrated slower reaction times at all loads, but there were no significant age differences in accuracy. Regardless of age, alpha power decreased, and alpha frequency increased with load during encoding, and the magnitude of alpha suppression during retention was larger at higher loads. While alpha power during retention was lower than fixation in older, but not younger adults, the relative change from fixation was not significantly different between age groups. Individual differences in alpha power did not predict performance for either age groups or at any WM loads. Future research should elaborate the functional significance of alpha power and frequency changes that accompany WM performance in cognitive ageing.


2017 ◽  
Vol 29 (9) ◽  
pp. 1483-1497 ◽  
Author(s):  
Camarin E. Rolle ◽  
Joaquin A. Anguera ◽  
Sasha N. Skinner ◽  
Bradley Voytek ◽  
Adam Gazzaley

Daily experiences demand both focused and broad allocation of attention for us to interact efficiently with our complex environments. Many types of attention have shown age-related decline, although there is also evidence that such deficits may be remediated with cognitive training. However, spatial attention abilities have shown inconsistent age-related differences, and the extent of potential enhancement of these abilities remains unknown. Here, we assessed spatial attention in both healthy younger and older adults and trained this ability in both age groups for 5 hr over the course of 2 weeks using a custom-made, computerized mobile training application. We compared training-related gains on a spatial attention assessment and spatial working memory task to age-matched controls who engaged in expectancy-matched, active placebo computerized training. Age-related declines in spatial attention abilities were observed regardless of task difficulty. Spatial attention training led to improved focused and distributed attention abilities as well as improved spatial working memory in both younger and older participants. No such improvements were observed in either of the age-matched control groups. Note that these findings were not a function of improvements in simple response time, as basic motoric function did not change after training. Furthermore, when using change in simple response time as a covariate, all findings remained significant. These results suggest that spatial attention training can lead to enhancements in spatial working memory regardless of age.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gianluca Amico ◽  
Sabine Schaefer

Studies examining the effect of embodied cognition have shown that linking one’s body movements to a cognitive task can enhance performance. The current study investigated whether concurrent walking while encoding or recalling spatial information improves working memory performance, and whether 10-year-old children, young adults, or older adults (Mage = 72 years) are affected differently by embodiment. The goal of the Spatial Memory Task was to encode and recall sequences of increasing length by reproducing positions of target fields in the correct order. The nine targets were positioned in a random configuration on a large square carpet (2.5 m × 2.5 m). During encoding and recall, participants either did not move, or they walked into the target fields. In a within-subjects design, all possible combinations of encoding and recall conditions were tested in counterbalanced order. Contrary to our predictions, moving particularly impaired encoding, but also recall. These negative effects were present in all age groups, but older adults’ memory was hampered even more strongly by walking during encoding and recall. Our results indicate that embodiment may not help people to memorize spatial information, but can create a dual-task situation instead.


2019 ◽  
Vol 41 (10) ◽  
pp. 1014-1035
Author(s):  
Joelle C. Ruthig ◽  
Dmitri P. Poltavski ◽  
Thomas Petros

The positivity effect among older adults is a tendency to process more positive and/or less negative emotional stimuli compared to younger adults, with unknown upper age boundaries. Cognitive and emotional working memory were assessed in young-old adults (60–75) and very old adults (VOAs; 80+) to determine whether emotional working memory declines similar to the age-related decline of cognitive working memory. The moderating role of valence on the link between age and emotional working memory was examined to identify change in positivity effect with advanced age. Electroencephalography (EEG) markers of cognitive workload and engagement were obtained to test the theory of cognitive resource allocation in older adults’ emotional stimuli processing. EEG recordings were collected during cognitive memory task and emotional working memory tasks that required rating emotional intensity of images pairs. Results indicate a positivity effect among VOAs that does not require additional cognitive effort and is not likely to diminish with age.


2022 ◽  
Vol 12 ◽  
Author(s):  
Larry E. Humes ◽  
Gary R. Kidd ◽  
Jennifer J. Lentz

The Test of Basic Auditory Capabilities (TBAC) is a battery of auditory-discrimination tasks and speech-identification tasks that has been normed on several hundred young normal-hearing adults. Previous research with the TBAC suggested that cognitive function may impact the performance of older adults. Here, we examined differences in performance on several TBAC tasks between a group of 34 young adults with a mean age of 22.5 years (SD = 3.1 years) and a group of 115 older adults with a mean age of 69.2 years (SD = 6.2 years) recruited from the local community. Performance of the young adults was consistent with prior norms for this age group. Not surprisingly, the two groups differed significantly in hearing loss and working memory with the older adults having more hearing loss and poorer working memory than the young adults. The two age groups also differed significantly in performance on six of the nine measures extracted from the TBAC (eight test scores and one average test score) with the older adults consistently performing worse than the young adults. However, when these age-group comparisons were repeated with working memory and hearing loss as covariates, the groups differed in performance on only one of the nine auditory measures from the TBAC. For eight of the nine TBAC measures, working memory was a significant covariate and hearing loss never emerged as a significant factor. Thus, the age-group deficits observed initially on the TBAC most often appeared to be mediated by age-related differences in working memory rather than deficits in auditory processing. The results of these analyses of age-group differences were supported further by linear-regression analyses with each of the 9 TBAC scores serving as the dependent measure and age, hearing loss, and working memory as the predictors. Regression analyses were conducted for the full set of 149 adults and for just the 115 older adults. Working memory again emerged as the predominant factor impacting TBAC performance. It is concluded that working memory should be considered when comparing the performance of young and older adults on auditory tasks, including the TBAC.


2020 ◽  
Author(s):  
Vladislava Segen ◽  
Marios N Avraamides ◽  
Timothy J. Slattery ◽  
Jan Wiener

Ageing is associated with declines in spatial memory, however, the source of these deficits remains unclear. Here we used eye-tracking to investigate age-related differences in spatial encoding strategies and the cognitive processes underlying the age-related deficits in spatial memory tasks. To do so we asked young and older participants to encode the locations of objects in a virtual room shown as a picture on a computer screen. The availability and utility of room-based landmarks was manipulated by removing landmarks, presenting identical landmarks rendering them uninformative, or by presenting unique landmarks that could be used to encode object locations. In the test phase, participants viewed a second picture of the same room taken from the same (0°) or a different perspective (30°) and judged whether the objects occupied the same or different locations in the room. We found that the introduction of perspective shift and swapping of objects between encoding and testing impaired performance in both age groups. Furthermore, our results revealed that although older adults performed the task as well as younger participants, they relied on different visual encoding strategies to solve the task. Specifically, gaze analysis revealed that older adults showed a greater preference towards a more categorical encoding strategy in which they formed relationships between objects and landmarks.


2020 ◽  
pp. 174702182097074
Author(s):  
Agnieszka J Jaroslawska ◽  
Stephen Rhodes ◽  
Clément Belletier ◽  
Jason M Doherty ◽  
Nelson Cowan ◽  
...  

Although there is evidence that the effect of including a concurrent processing demand on the storage of information in working memory is disproportionately larger for older than younger adults, not all studies show this age-related impairment, and the critical factors responsible for any such impairment remain elusive. Here we assess whether domain overlap between storage and processing activities, and access to semantic representations, are important determinants of performance in a sample of younger and older adults ( N = 119). We developed four versions of a processing task by manipulating the type of stimuli involved (either verbal or non-verbal) and the decision that participants had to make about the stimuli presented on the screen. Participants either had to perform a spatial judgement, in deciding whether the verbal or non-verbal item was presented above or below the centre of the screen, or a semantic judgement, in deciding whether the stimulus refers to something living or not living. The memory task was serial-ordered recall of visually presented letters. The study revealed a large increase in age-related memory differences when concurrent processing was required. These differences were smaller when storage and processing activities both used verbal materials. Dual-task effects on processing were also disproportionate for older adults. Age differences in processing performance appeared larger for tasks requiring spatial decisions rather than semantic decisions. We discuss these findings in relation to three competing frameworks of working memory and the extant literature on cognitive ageing.


2015 ◽  
Vol 112 (24) ◽  
pp. 7593-7598 ◽  
Author(s):  
Douglas D. Garrett ◽  
Irene E. Nagel ◽  
Claudia Preuschhof ◽  
Agnieszka Z. Burzynska ◽  
Janina Marchner ◽  
...  

Better-performing younger adults typically express greater brain signal variability relative to older, poorer performers. Mechanisms for age and performance-graded differences in brain dynamics have, however, not yet been uncovered. Given the age-related decline of the dopamine (DA) system in normal cognitive aging, DA neuromodulation is one plausible mechanism. Hence, agents that boost systemic DA [such as d-amphetamine (AMPH)] may help to restore deficient signal variability levels. Furthermore, despite the standard practice of counterbalancing drug session order (AMPH first vs. placebo first), it remains understudied how AMPH may interact with practice effects, possibly influencing whether DA up-regulation is functional. We examined the effects of AMPH on functional-MRI–based blood oxygen level-dependent (BOLD) signal variability (SDBOLD) in younger and older adults during a working memory task (letter n-back). Older adults expressed lower brain signal variability at placebo, but met or exceeded young adult SDBOLD levels in the presence of AMPH. Drug session order greatly moderated change–change relations between AMPH-driven SDBOLD and reaction time means (RTmean) and SDs (RTSD). Older adults who received AMPH in the first session tended to improve in RTmean and RTSD when SDBOLD was boosted on AMPH, whereas younger and older adults who received AMPH in the second session showed either a performance improvement when SDBOLD decreased (for RTmean) or no effect at all (for RTSD). The present findings support the hypothesis that age differences in brain signal variability reflect aging-induced changes in dopaminergic neuromodulation. The observed interactions among AMPH, age, and session order highlight the state- and practice-dependent neurochemical basis of human brain dynamics.


2019 ◽  
Author(s):  
Marlene Roesner ◽  
Stefan Arnau ◽  
Isabel Skiba ◽  
Edmund Wascher ◽  
Daniel Schneider

There is an ongoing debate on the contribution of target enhancement and distractor inhibition processes to selective attention. In a working memory task, we presented to-be-memorized information in a way that posterior hemispheric asymmetries in oscillatory power could be unambiguously linked to lateral target vs. distractor processing. Alpha power asymmetries (8-14 Hz) were insensitive to the number of cued or non-cued items, supporting their relation to spatial attention. Furthermore, we found an increase in alpha power contralateral to non-cued working memory content and an alpha power suppression contralateral to relevant information. These oscillatory patterns relative to the positions of cued and non-cued items were related to the participants' ability to control for the impact of irrelevant information on working memory retrieval. Based on these results, we propose that spatially specific modulations of posterior alpha power are related to accessing vs. inhibiting the spatial context of information stored in working memory.


Sign in / Sign up

Export Citation Format

Share Document