scholarly journals Computational study of the furin cleavage domain of SARS-CoV-2: delta binds strongest of extant variants

2022 ◽  
Author(s):  
Muhammad Zaki Jawaid ◽  
Avinash Baidya ◽  
Sofia Jakovcevic ◽  
Jacob Lusk ◽  
Rustin Mahboubi-Ardakani ◽  
...  

We demonstrate that AlphaFold and AlphaFold Multimer, implemented within the ColabFold suite, can accurately predict the structures of the furin enzyme with known six residue inhibitory peptides. Noting the similarity of the peptide inhibitors to polybasic furin cleavage domain insertion region of the SARS-CoV-2, which begins at P681, we implement this approach to study the wild type furin cleavage domain for the virus and several mutants. We introduce mutations in silico for alpha, omicron, and delta variants, for several sequences which have been rarely observed, for sequences which have not yet been observed, for other coronaviruses (NL63, OC43, HUK1a, HUK1b, MERS, and 229E), and for the H5N1 flu. We show that interfacial hydrogen bonds between the furin cleavage domain and furin are a good measure of binding strength that correlate well with endpoint binding free energy estimates, and conclude that among all candidate viral sequences studied, delta is near the very top binding strength within statistical accuracy. However, the binding strength of several rare sequences match delta within statistical accuracy. We find that the furin S1 pocket is optimized for binding arginine as opposed to lysine. This residue, typically at sequence position five, contains the most hydrogen bonds to the furin, and hydrogen bond count for just this residue shows a strong positive correlation with the overall hydrogen bond count . We demonstrate that the root mean square backbone C-alpha fluctuation of the first residue in the furin cleavage domain has a strong negative correlation with the interfacial hydrogen bond count. We show by considering the variation with the number of basic residues that the maximum mean number of interfacial hydrogen bonds expected is 15.7 at 4 basic residues.

2009 ◽  
Vol 15 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Solveig Gaarn Olesen ◽  
Steen Hammerum

It is generally expected that the hydrogen bond strength in a D–H•••A adduct is predicted by the difference between the proton affinities (Δ PA) of D and A, measured by the adduct stabilization, and demonstrated by the infrared (IR) redshift of the D–H bond stretching vibrational frequency. These criteria do not always yield consistent predictions, as illustrated by the hydrogen bonds formed by the E and Z OH groups of protonated carboxylic acids. The Δ PA and the stabilization of a series of hydrogen bonded adducts indicate that the E OH group forms the stronger hydrogen bonds, whereas the bond length changes and the redshift favor the Z OH group, matching the results of NBO and AIM calculations. This reflects that the thermochemistry of adduct formation is not a good measure of the hydrogen bond strength in charged adducts, and that the ionic interactions in the E and Z adducts of protonated carboxylic acids are different. The OH bond length and IR redshift afford the better measure of hydrogen bond strength.


Author(s):  
Nadia Liyana Khairuanuar ◽  
Karen A. Crouse ◽  
Huey Chong Kwong ◽  
Sang Loon Tan ◽  
Edward R. T. Tiekink

The title hydrazine carbodithioate chloroform hemisolvate, 2C15H14N2O2S2·CHCl3, comprises two independent hydrazine carbodithioate molecules, A and B, and a chloroform molecule; the latter is statistically disordered about its molecular threefold axis. The common features of the organic molecules include an almost planar, central CN2S2 chromophore [r.m.s. deviation = 0.0203 Å (A) and 0.0080 Å (B)], an E configuration about the imine bond and an intramolecular hydroxyl-O—H...N(imine) hydrogen bond. The major conformational difference between the molecules is seen in the relative dispositions of the phenyl rings as indicated by the values of the dihedral angles between the central plane and phenyl ring of 71.21 (6)° (A) and 54.73 (7)° (B). Finally, a difference is seen in the disposition of the outer hydroxyl-H atoms, having opposite relative orientations. In the calculated gas-phase structure, the entire molecule is planar with the exception of the perpendicular phenyl ring. In the molecular packing, the A and B molecules assemble into a two-molecule aggregate via N—H...S hydrogen bonds and eight-membered {...HNCS}2 synthons. The dimeric assemblies are connected into supramolecular chains via hydroxyl-O—H...O(hydroxyl) hydrogen bonds and these are linked into a double-chain through hydroxy-O—H...π(phenyl) interactions. The double-chains are connected into a three-dimensional architecture through phenyl-C—H...O(hydroxyl) and phenyl-C—H...π(phenyl) interactions. The overall assembly defines columns along the a-axis direction in which reside the chloroform molecules, which are stabilized by chloroform–methine-C—H...S(thione) and phenyl-C—H...Cl contacts. The analysis of the calculated Hirshfeld surfaces, non-covalent interaction plots and interaction energies confirm the importance of the above-mentioned interactions, but also of cooperative, non-standard interactions such as π(benzene)...π(hydrogen-bond-mediated-ring) contacts.


2021 ◽  
Author(s):  
Muhammad- Zaki Jawaid ◽  
Avinash Baidya ◽  
Rustin Mahboubi-Ardakani ◽  
Richard L Davis ◽  
Daniel L Cox

The recent emergence of the omicron variant of the SARS-CoV-2 virus with large numbers of mutations has raised concern about a potential new surge in infections. Here we use molecular dynamics to study the biophysics of the interface of the omicron spike protein binding to (i) the ACE2 receptor protein, (ii) antibodies from all known binding regions, and (iii) the furin binding domain. Our simulations suggest that while there is significant reduction of antibody binding strength corresponding to escape, the omicron spike pays a cost in terms of weaker receptor binding. The furin cleavage domain is the same or weaker binding than the alpha variant, suggesting less viral load and disease intensity than the extant delta variant.


1987 ◽  
Vol 52 (11) ◽  
pp. 2673-2679 ◽  
Author(s):  
Oľga Hritzová ◽  
Peter Kutschy ◽  
Ján Imrich ◽  
Thomas Schöffmann

N-(3-Chloro-2-benzo[b]thienocarbonyl)-N'-monosubstituted thiourea derivatives undergo photocyclizations with lower yields than those obtained from analogous N',N'-disubstituted derivatives. This decreased reactivity is caused by the existence of a six-membered cyclic form with the very strong hydrogen bond NH···O=C. The possibility of formation of various conformers has been found with N-(2-benzo[b]thienocarbonyl)-N'-monosubstituted thiourea derivatives as a consequence of the rotation around the C(2)-C(O) connecting line.


2021 ◽  
pp. 1-8
Author(s):  
James A. Kaduk ◽  
Amy M. Gindhart ◽  
Thomas N. Blanton

The crystal structure of tofacitinib dihydrogen citrate (tofacitinib citrate) has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Tofacitinib dihydrogen citrate crystallizes in space group P212121 (#19) with a = 5.91113(1), b = 12.93131(3), c = 30.43499(7) Å, V = 2326.411(6) Å3, and Z = 4. The crystal structure consists of corrugated layers perpendicular to the c-axis. Within the layers, cation⋯anion and anion⋯anion hydrogen bonds link the fragments into a two-dimensional network parallel to the ab-plane. Between the layers, there are only van der Waals contacts. A terminal carboxylic acid group in the citrate anion forms a strong charge-assisted hydrogen bond to the ionized central carboxylate group. The other carboxylic acid acts as a donor to the carbonyl group of the cation. The citrate hydroxy group forms an intramolecular charge-assisted hydrogen bond to the ionized central carboxylate. Two protonated nitrogen atoms in the cation act as donors to the ionized central carboxylate of the anion. These hydrogen bonds form a ring with the graph set symbol R2,2(8). The powder pattern has been submitted to ICDD® for inclusion in the Powder Diffraction File™ (PDF®).


2006 ◽  
Vol 62 (5) ◽  
pp. o1754-o1755
Author(s):  
Neng-Fang She ◽  
Sheng-Li Hu ◽  
Hui-Zhen Guo ◽  
An-Xin Wu

The title compound, C24H18Br2N4O2·H2O, forms a supramolecular structure via N—H...O, O—H...O and C—H...O hydrogen bonds. In the crystal structure, the water molecule serves as a bifurcated hydrogen-bond acceptor and as a hydrogen-bond donor.


2013 ◽  
Vol 68 (3) ◽  
pp. 214-222 ◽  
Author(s):  
Jörg Hübscher ◽  
Michael Günthel ◽  
Robert Rosin ◽  
Wilhelm Seichter ◽  
Florian Mertens ◽  
...  

Two new linker-type molecules 1a and 1b composed of o-hydroxyacetophenone coordinative groups attached to linear ethynylene or 1,4-phenylenediethynylene spacer units have been synthesised and structurally characterised. An X-ray crystallographic study for both compounds has shown structures with strong intramolecular hydrogen bonds fitting in the model of ‘Intramolecular Resonance Assisted Hydrogen Bond (IRHAB)’. Initial coordination experiments with Cu(II) were performed and the resulting materials characterised by PXRD. The similarity of the copper coordination between these compounds and copper(II) acetylacetonate complexes was demonstrated by XPS measurements. Based on the evidence of these studies, and on elemental analysis, the formation of the corresponding coordination polymers comprising Cu(II) and the linkers has been proposed


2014 ◽  
Vol 16 (42) ◽  
pp. 23026-23037 ◽  
Author(s):  
Piotr Durlak ◽  
Zdzisław Latajka

The dynamics of the intramolecular short hydrogen bond in the molecular crystal of benzoylacetone and its deuterated analogue are investigated using ab initio molecular dynamics simulations.


2013 ◽  
Vol 69 (2) ◽  
pp. m73-m74 ◽  
Author(s):  
Sigurd Øien ◽  
David Stephen Wragg ◽  
Karl Petter Lillerud ◽  
Mats Tilset

In the title compound, [Cu2Cl4(C12H8N2O4)2]·4C3H7NO, which contains a chloride-bridged centrosymmetric CuIIdimer, the CuIIatom is in a distorted square-pyramidal 4 + 1 coordination geometry defined by the N atoms of the chelating 2,2′-bipyridine ligand, a terminal chloride and two bridging chloride ligands. Of the two independent dimethylformamide molecules, one is hydrogen bonded to a single –COOH group, while one links two adjacent –COOH groupsviaa strong accepted O—H...O and a weak donated C(O)—H...O hydrogen bond. Two of these last molecules and the two –COOH groups form a centrosymmetric hydrogen-bonded ring in which the CH=O and the –COOH groups by disorder adopt two alternate orientations in a 0.44:0.56 ratio. These hydrogen bonds link the CuIIcomplex molecules and the dimethylformamide solvent molecules into infinite chains along [-111]. Slipped π–π stacking interactions between two centrosymmetric pyridine rings (centroid–centroid distance = 3.63 Å) contribute to the coherence of the structure along [0-11].


Sign in / Sign up

Export Citation Format

Share Document