scholarly journals Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders

Author(s):  
Alexander S Hatoum ◽  
Sarah M.C. Colbert ◽  
Emma C Johnson ◽  
Spencer B. Huggett ◽  
Joseph D. Deak ◽  
...  

Genetic liability to substance use disorders can be parsed into loci conferring general and substance-specific addiction risk. We report a multivariate genome-wide association study that disaggregates general and substance-specific loci for problematic alcohol use, problematic tobacco use, and cannabis and opioid use disorders in a sample of 1,025,550 individuals of European and 92,630 individuals of African descent. Nineteen loci were genome-wide significant for the general addiction risk factor (addiction-rf), which showed high polygenicity. Across ancestries PDE4B was significant (among others), suggesting dopamine regulation as a cross-trait vulnerability. The addiction-rf polygenic risk score was associated with substance use disorders, psychopathologies, somatic conditions, and environments associated with the onset of addictions. Substance-specific loci (9 for alcohol, 32 for tobacco, 5 for cannabis, 1 for opioids) included metabolic and receptor genes. These findings provide insight into the genetic architecture of general and substance-specific use disorder risk that may be leveraged as treatment targets.

2021 ◽  
Author(s):  
Kazuyoshi Ishigaki ◽  
Saori Sakaue ◽  
Chikashi Terao ◽  
Yang Luo ◽  
Kyuto Sonehara ◽  
...  

AbstractTrans-ancestry genetic research promises to improve power to detect genetic signals, fine-mapping resolution, and performances of polygenic risk score (PRS). We here present a large-scale genome-wide association study (GWAS) of rheumatoid arthritis (RA) which includes 276,020 samples of five ancestral groups. We conducted a trans-ancestry meta-analysis and identified 124 loci (P < 5 × 10-8), of which 34 were novel. Candidate genes at the novel loci suggested essential roles of the immune system (e.g., TNIP2 and TNFRSF11A) and joint tissues (e.g., WISP1) in RA etiology. Trans-ancestry fine mapping identified putatively causal variants with biological insights (e.g., LEF1). Moreover, PRS based on trans-ancestry GWAS outperformed PRS based on single-ancestry GWAS and had comparable performance between European and East Asian populations. Our study provides multiple insights into the etiology of RA and improves genetic predictability of RA.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Maria Didriksen ◽  
Muhammad Sulaman Nawaz ◽  
Joseph Dowsett ◽  
Steven Bell ◽  
Christian Erikstrup ◽  
...  

AbstractRestless legs syndrome (RLS) is a common neurological sensorimotor disorder often described as an unpleasant sensation associated with an urge to move the legs. Here we report findings from a meta-analysis of genome-wide association studies of RLS including 480,982 Caucasians (cases = 10,257) and a follow up sample of 24,977 (cases = 6,651). We confirm 19 of the 20 previously reported RLS sequence variants at 19 loci and report three novel RLS associations; rs112716420-G (OR = 1.25, P = 1.5 × 10−18), rs10068599-T (OR = 1.09, P = 6.9 × 10−10) and rs10769894-A (OR = 0.90, P = 9.4 × 10−14). At four of the 22 RLS loci, cis-eQTL analysis indicates a causal impact on gene expression. Through polygenic risk score for RLS we extended prior epidemiological findings implicating obesity, smoking and high alcohol intake as risk factors for RLS. To improve our understanding, with the purpose of seeking better treatments, more genetics studies yielding deeper insights into the disease biology are needed.


Author(s):  
Richard Sherva ◽  
Congcong Zhu ◽  
Leah Wetherill ◽  
Howard J. Edenberg ◽  
Emma Johnson ◽  
...  

Aim: Substance use disorders (SUD) result in substantial morbidity and mortality worldwide. Opioids, and to a lesser extent cocaine, contribute to a large percentage of this health burden. Despite their high heritability, few genetic risk loci have been identified for either opioid or cocaine dependence (OD or CD, respectively). A genome-wide association study of OD and CD related phenotypes reflecting the time between first self-reported use of these substances and a first DSM-IV dependence diagnosis was conducted. Methods: Cox proportional hazards regression in a discovery sample of 6,188 African-Americans (AAs) and 6,835 European-Americans (EAs) participants in a genetic study of multiple substance dependence phenotypes were used to test for association between genetic variants and these outcomes. The top findings were tested for replication in two independent cohorts. Results: In the discovery sample, three independent regions containing variants associated with time to dependence at P < 5 x 10-8 were identified, one (rs61835088 = 1.03 x 10-8) for cocaine in the combined EA-AA meta-analysis in the gene FAM78B on chromosome 1, and two for opioids in the AA portion of the sample in intergenic regions of chromosomes 4 (rs4860439, P = 1.37 x 10-8) and 9 (rs7032521, P = 3.30 x 10-8). After meta-analysis with data from the replication cohorts, the signal at rs61835088 improved (HR = 0.87, P = 3.71 x 10-9 and an intergenic SNP on chromosome 21 (rs2825295, HR = 1.14, P = 2.57 x 10-8) that missed the significance threshold in the AA discovery sample became genome-wide significant (GWS) for CD. Conclusions: Although the two GWS variants are not in genes with obvious links to SUD biology and have modest effect sizes, they are statistically robust and show evidence for association in independent samples. These results may point to novel pathways contributing to disease progression and highlight the utility of related phenotypes to better understand the genetics of SUDs.


Author(s):  
Richard Sherva ◽  
Congcong Zhu ◽  
Leah Wetherill ◽  
Howard J. Edenberg ◽  
Emma Johnson ◽  
...  

Aim: Substance use disorders (SUD) result in substantial morbidity and mortality worldwide. Opioids, and to a lesser extent cocaine, contribute to a large percentage of this health burden. Despite their high heritability, few genetic risk loci have been identified for either opioid or cocaine dependence (OD or CD, respectively). A genome-wide association study of OD and CD related phenotypes reflecting the time between first self-reported use of these substances and a first DSM-IV dependence diagnosis was conducted. Methods: Cox proportional hazards regression in a discovery sample of 6,188 African-Americans (AAs) and 6,835 European-Americans (EAs) participants in a genetic study of multiple substance dependence phenotypes were used to test for association between genetic variants and these outcomes. The top findings were tested for replication in two independent cohorts. Results: In the discovery sample, three independent regions containing variants associated with time to dependence at P < 5 × 10−8 were identified, one (rs61835088 = 1.03 × 10−8) for cocaine in the combined EA-AA meta-analysis in the gene FAM78B on chromosome 1, and two for opioids in the AA portion of the sample in intergenic regions of chromosomes 4 (rs4860439, P = 1.37 × 10−8) and 9 (rs7032521, P = 3.30 × 10−8). After meta-analysis with data from the replication cohorts, the signal at rs61835088 improved (HR = 0.87, P = 3.71 × 10−9 and an intergenic SNP on chromosome 21 (rs2825295, HR = 1.14, P = 2.57 × 10−8) that missed the significance threshold in the AA discovery sample became genome-wide significant (GWS) for CD. Conclusions: Although the two GWS variants are not in genes with obvious links to SUD biology and have modest effect sizes, they are statistically robust and show evidence for association in independent samples. These results may point to novel pathways contributing to disease progression and highlight the utility of related phenotypes to better understand the genetics of SUDs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Jaime Martínez-Magaña ◽  
Alma Delia Genis-Mendoza ◽  
Jorge Ameth Villatoro Velázquez ◽  
Marycarmen Bustos-Gamiño ◽  
Isela Esther Juárez-Rojop ◽  
...  

AbstractThe combination of substance use and psychiatric disorders is one of the most common comorbidities. The objective of this study was to perform a genome-wide association study of this comorbidity (Com), substance use alone (Subs), and psychiatric symptomatology alone (Psych) in the Mexican population. The study included 3914 individuals of Mexican descent. Genotyping was carried out using the PsychArray microarray and genome-wide correlations were calculated. Genome-wide associations were analyzed using multiple logistic models, polygenic risk scores (PRSs) were evaluated using multinomial models, and vertical pleiotropy was evaluated by generalized summary-data-based Mendelian randomization. Brain DNA methylation quantitative loci (brain meQTL) were also evaluated in the prefrontal cortex. Genome-wide correlation and vertical pleiotropy were found between all traits. No genome-wide association signals were found, but 64 single-nucleotide polymorphism (SNPs) reached nominal associations (p < 5.00e−05). The SNPs associated with each trait were independent, and the individuals with high PRSs had a higher prevalence of tobacco and alcohol use. In the multinomial models all of the PRSs (Subs-PRS, Com-PRS, and Psych-PRS) were associated with all of the traits. Brain meQTL of the Subs-associated SNPs had an effect on the genes enriched in insulin signaling pathway, and that of the Psych-associated SNPs had an effect on the Fc gamma receptor phagocytosis pathway.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Sara Coles ◽  
Stephanie Giamberardino ◽  
Carol Haynes ◽  
Ruicong She ◽  
Hongsheng Gui ◽  
...  

Background: Exercise has shown benefit in patients with systolic heart failure, including in the clinical trial Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION). There is heterogeneity in who derives benefit from exercise, and the biologic mechanisms of favorable response to exercise in systolic heart failure are not well understood. Hypothesis: Genetic variation is an underlying factor influencing heterogeneity in response to exercise in patients with systolic heart failure. Methods: The HF-ACTION trial randomized individuals with systolic heart failure (left ventricular ejection fraction <35%) to supervised exercise versus usual care. In this study, we performed a genome wide association study (GWAS) in the HF-ACTION biorepository using the Axiom Biobank1 genotyping array (13,403,591 single nucleotide polymorphisms [SNPs] after quality control on directly genotyped and 1000 genomes imputed data), in N=377 study subjects who completed the supervised exercise arm. Using change in peak VO2 as our outcome, we ran within-ancestry GWASes, modeling SNP effects as both additive and dominant, and conducted across-ancestry meta-analysis within each genetic model. Results: Five loci met genome-wide significance in the European ancestry analyses, 5 loci in the African ancestry, and 8 in the meta-analyses. The two most significantly associated loci across both additive and dominant meta-analysis models were rs111577308 located in the histone acetylation for transcription elongator complex 3 gene ( ELP3, p=1.212x10 -9 ) and rs75444785 located in the phosphodiesterase 4D gene ( PDE4D , p=1.565x10 -9 ). ELP3 is responsible for histone modifications related to DNA transcription factor complexes, and PDE4D is involved in cyclic AMP cell signaling. In silico analysis of these loci showed that they are in linkage with regions associated with skeletal muscle and peripheral vascular disease phenotypes. Conclusions: Using a genome-wide association study in a well-phenotyped clinical trial of exercise in systolic heart failure, we found common genetic variants in genes involved in DNA transcription histone modification and cyclic AMP cell signaling that are associated with a more favorable response to exercise.


Sign in / Sign up

Export Citation Format

Share Document