scholarly journals Approximate Bayesian computation of transcriptional pausing mechanisms

2019 ◽  
Author(s):  
Jordan Douglas ◽  
Richard Kingston ◽  
Alexei J. Drummond

AbstractAt a transcriptional pause site, RNA polymerase (RNAP) takes significantly longer than average to transcribe the nucleotide before moving on to the next position. At the single-molecule level this process is stochastic, while at the ensemble level it plays a variety of important roles in biological systems. The pause signal is complex and invokes interplay between a range of mechanisms. Among these factors are: non-canonical transcription events – such as backtracking and hypertranslocation; the catalytically inactive intermediate state hypothesised to act as a precursor to backtracking; the energetic configuration of basepairing within the DNA/RNA hybrid and of those flanking the transcription bubble; and the structure of the nascent mRNA. There are a variety of plausible models and hypotheses but it is unclear which explanations are better.We performed a systematic comparison of 128 kinetic models of transcription using approximate Bayesian computation. Under this Bayesian framework, models and their parameters were assessed by their ability to predict the locations of pause sites in the E. coli genome.These results suggest that the structural parameters governing the transcription bubble, and the dynamics of the transcription bubble during translocation, play significant roles in pausing. This is consistent with a model where the relative Gibbs energies between the pre and posttranslocated positions, and the rate of translocation between the two, is the primary factor behind invoking transcriptional pausing. Whereas, hypertranslocation, backtracking, and the intermediate state are not required to predict the locations of transcriptional pause sites. Finally, we compared the predictive power of these kinetic models to that of a non-explanatory statistical model. The latter approach has significantly greater predictive power (AUC = 0.89 cf. 0.73), suggesting that, while current models of transcription contain a moderate degree of predictive power, a much greater quantitative understanding of transcriptional pausing is required to rival that of a sequence motif.Author summaryTranscription involves the copying of a DNA template into messenger RNA (mRNA). This reaction is implemented by RNA polymerase (RNAP) successively incorporating nucleotides onto the mRNA. At a transcriptional pause site, RNAP takes significantly longer than average to incorporate the nucleotide. A model which can not only predict the locations of pause sites in a DNA template, but also explain how or why they are pause sites, is sought after.Transcriptional pausing emerges from cooperation between several mechanisms. These mechanisms include non-canonical RNAP reactions; and the thermodynamic properties of DNA and mRNA. There are many hypotheses and kinetic models of transcription but it is unclear which hypotheses and models are required to predict and explain transcriptional pausing.We have developed a rigorous statistical framework for inferring model parameters and comparing hypotheses. By applying this framework to published pause-site data, we compared 128 kinetic models of transcription with the aim of finding the best models for predicting the locations of pause sites. This analysis offered insights into mechanisms of transcriptional pausing. However, the predictive power of these models lacks compared with non-explanatory statistical models - suggesting the data contains more information than can be satisfied by current quantitative understandings of transcriptional pausing.

2004 ◽  
Vol 24 (3) ◽  
pp. 1122-1131 ◽  
Author(s):  
Diane Forget ◽  
Marie-France Langelier ◽  
Cynthia Thérien ◽  
Vincent Trinh ◽  
Benoit Coulombe

ABSTRACT The topological organization of a TATA binding protein-TFIIB-TFIIF-RNA polymerase II (RNAP II)-TFIIE-promoter complex was analyzed using site-specific protein-DNA photo-cross-linking of gel-purified complexes. The cross-linking results for the subunits of RNAP II were used to determine the path of promoter DNA against the structure of the enzyme. The results indicate that promoter DNA wraps around the mobile clamp of RNAP II. Cross-linking of TFIIF and TFIIE both upstream of the TATA element and downstream of the transcription start site suggests that both factors associate with the RNAP II mobile clamp. TFIIEα closely approaches promoter DNA at nucleotide −10, a position immediately upstream of the transcription bubble in the open complex. Increased stimulation of transcription initiation by TFIIEα is obtained when the DNA template is artificially premelted in the −11/−1 region, suggesting that TFIIEα facilitates open complex formation, possibly through its interaction with the upstream end of the partially opened transcription bubble. These results support the central roles of the mobile clamp of RNAP II and TFIIE in transcription initiation.


Author(s):  
Cecilia Viscardi ◽  
Michele Boreale ◽  
Fabio Corradi

AbstractWe consider the problem of sample degeneracy in Approximate Bayesian Computation. It arises when proposed values of the parameters, once given as input to the generative model, rarely lead to simulations resembling the observed data and are hence discarded. Such “poor” parameter proposals do not contribute at all to the representation of the parameter’s posterior distribution. This leads to a very large number of required simulations and/or a waste of computational resources, as well as to distortions in the computed posterior distribution. To mitigate this problem, we propose an algorithm, referred to as the Large Deviations Weighted Approximate Bayesian Computation algorithm, where, via Sanov’s Theorem, strictly positive weights are computed for all proposed parameters, thus avoiding the rejection step altogether. In order to derive a computable asymptotic approximation from Sanov’s result, we adopt the information theoretic “method of types” formulation of the method of Large Deviations, thus restricting our attention to models for i.i.d. discrete random variables. Finally, we experimentally evaluate our method through a proof-of-concept implementation.


2021 ◽  
Vol 62 (2) ◽  
Author(s):  
Jason D. Christopher ◽  
Olga A. Doronina ◽  
Dan Petrykowski ◽  
Torrey R. S. Hayden ◽  
Caelan Lapointe ◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 312
Author(s):  
Ilze A. Auzina ◽  
Jakub M. Tomczak

Many real-life processes are black-box problems, i.e., the internal workings are inaccessible or a closed-form mathematical expression of the likelihood function cannot be defined. For continuous random variables, likelihood-free inference problems can be solved via Approximate Bayesian Computation (ABC). However, an optimal alternative for discrete random variables is yet to be formulated. Here, we aim to fill this research gap. We propose an adjusted population-based MCMC ABC method by re-defining the standard ABC parameters to discrete ones and by introducing a novel Markov kernel that is inspired by differential evolution. We first assess the proposed Markov kernel on a likelihood-based inference problem, namely discovering the underlying diseases based on a QMR-DTnetwork and, subsequently, the entire method on three likelihood-free inference problems: (i) the QMR-DT network with the unknown likelihood function, (ii) the learning binary neural network, and (iii) neural architecture search. The obtained results indicate the high potential of the proposed framework and the superiority of the new Markov kernel.


Author(s):  
Cesar A. Fortes‐Lima ◽  
Romain Laurent ◽  
Valentin Thouzeau ◽  
Bruno Toupance ◽  
Paul Verdu

2014 ◽  
Vol 64 (3) ◽  
pp. 416-431 ◽  
Author(s):  
C. Baudet ◽  
B. Donati ◽  
B. Sinaimeri ◽  
P. Crescenzi ◽  
C. Gautier ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document