Measurement of the Silicon Lattice Parameter by Scanning Single Photon X-Ray Interferometry

Author(s):  
Ulrich Kuetgens ◽  
Birk Andreas ◽  
Kathrin Friedrich ◽  
Christoph Weichert ◽  
Paul Kochert ◽  
...  
2021 ◽  
Vol 54 (5) ◽  
pp. 1403-1408
Author(s):  
C. P. Sasso ◽  
G. Mana ◽  
E. Massa

The measurement of the silicon lattice parameter by a separate-crystal triple-Laue X-ray interferometer is a key step for the realization of the kilogram by counting atoms. Since the measurement accuracy is approaching nine significant digits, a reliable model of the interferometer operation is required to quantify or exclude systematic errors. This paper investigates both analytically and experimentally the effect of the defocus (the difference between the splitter-to-mirror and analyser-to-mirror distances) on the phase of the interference fringes and the measurement of the lattice parameter.


1999 ◽  
Vol 9 (2) ◽  
pp. 225-232 ◽  
Author(s):  
A. Bergamin ◽  
G. Cavagnero ◽  
G. Mana ◽  
G. Zosi

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Durga Sankar Vavilapalli ◽  
Ambrose A. Melvin ◽  
F. Bellarmine ◽  
Ramanjaneyulu Mannam ◽  
Srihari Velaga ◽  
...  

AbstractIdeal sillenite type Bi12FeO20 (BFO) micron sized single crystals have been successfully grown via inexpensive hydrothermal method. The refined single crystal X-ray diffraction data reveals cubic Bi12FeO20 structure with single crystal parameters. Occurrence of rare Fe4+ state is identified via X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS). The lattice parameter (a) and corresponding molar volume (Vm) of Bi12FeO20 have been measured in the temperature range of 30–700 °C by the X-ray diffraction method. The thermal expansion coefficient (α) 3.93 × 10–5 K−1 was calculated from the measured values of the parameters. Electronic structure and density of states are investigated by first principle calculations. Photoelectrochemical measurements on single crystals with bandgap of 2 eV reveal significant photo response. The photoactivity of as grown crystals were further investigated by degrading organic effluents such as Methylene blue (MB) and Congo red (CR) under natural sunlight. BFO showed photodegradation efficiency about 74.23% and 32.10% for degrading MB and CR respectively. Interesting morphology and microstructure of pointed spearhead like BFO crystals provide a new insight in designing and synthesizing multifunctional single crystals.


Carbon Trends ◽  
2021 ◽  
pp. 100071
Author(s):  
Keith R. Hallam ◽  
James Edward Darnbrough ◽  
Charilaos Paraskevoulakos ◽  
Peter J. Heard ◽  
T. James Marrow ◽  
...  

1979 ◽  
Vol 23 ◽  
pp. 333-339
Author(s):  
S. K. Gupta ◽  
B. D. Cullity

Since the measurement of residual stress by X-ray diffraction techniques is dependent on the difference in angle of a diffraction peak maximum when the sample is examined consecutively with its surface at two different angles to the diffracting planes, it is important that these diffraction angles be obtained precisely, preferably with an accuracy of ± 0.01 deg. 2θ. Similar accuracy is desired in precise lattice parameter determination. In such measurements, it is imperative that the diffractometer be well-aligned. It is in the context of diffractometer alignment with the aid of a silicon powder standard free of residual stress that the diffraction peak analysis techniques described here have been developed, preparatory to residual stress determinations.


2000 ◽  
Vol 5 (S1) ◽  
pp. 412-424
Author(s):  
Jung Han ◽  
Jeffrey J. Figiel ◽  
Gary A. Petersen ◽  
Samuel M. Myers ◽  
Mary H. Crawford ◽  
...  

We report the growth and characterization of quaternary AlGaInN. A combination of photoluminescence (PL), high-resolution x-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) characterizations enables us to explore the contours of constant- PL peak energy and lattice parameter as functions of the quaternary compositions. The observation of room temperature PL emission at 351nm (with 20% Al and 5% In) renders initial evidence that the quaternary could be used to provide confinement for GaInN (and possibly GaN). AlGaInN/GaInN MQW heterostructures have been grown; both XRD and PL measurements suggest the possibility of incorporating this quaternary into optoelectronic devices.


1990 ◽  
Vol 04 (12) ◽  
pp. 823-830 ◽  
Author(s):  
S. HIGO ◽  
Y. HAKURAKU ◽  
T. OGUSHI ◽  
I. KAWANO ◽  
Y. ISHIKAWA

Samples of the YBaCuNbO system with different molecular ratios of YBa 2 NbO y to YBa 2 Cu 3 O 7−d, were prepared in air by the solid-state reaction method. The X-ray powder diffraction patterns showed that the sample was composed of two phases, one corresponding to the YBa 2 Cu 3 O 7−d phase and the other to the YBa 2 NbO y phase with a cubic lattice parameter of 8.425 Å to 8.436 Å depending on the Nb content. The superconducting zero resistivity temperature, T c 0, of the YBaCuNbO system increased with the increase of the molecular ratios, from 91.2 K up to a maximum temperature of 92.8 K, and then, by a further increase in the molecular ratio, the T c 0 was drastically reduced with a gradient of −1.94 K /%x.


Sign in / Sign up

Export Citation Format

Share Document