Sequential Recommender System of Educational Contents with End-to-End Title Feature Extraction for Reducing Utility Gap

Author(s):  
Kazuma Ohtomo ◽  
Ryosuke Harakawa ◽  
Masaki Iisaka ◽  
Masahiro Iwahashi
2021 ◽  
Vol 13 (22) ◽  
pp. 4541
Author(s):  
Jinliang Han ◽  
Xiubin Yang ◽  
Tingting Xu ◽  
Zongqiang Fu ◽  
Lin Chang ◽  
...  

In the previous study, there were a few direct star identification (star-ID) algorithms for smearing star image. An end-to-end star-ID algorithm is proposed in this article, to directly identify the smearing image from star sensors with fast attitude maneuvering. Combined with convolutional neural networks and the self-attention mechanism of transformer encoder, the algorithm can effectively classify the smearing image and identify the star. Through feature extraction and position encoding, neural networks learn the position of stars to generate semantic information and realize the end-to-end identification for the smearing star image. The algorithm can also solve the problem of low identification rate due to smearing of long exposure time for images. A dataset of dynamic stars is analyzed and constructed based on multiple angular velocities. Experiment results show that, compared with representative algorithms, the identification rate of the proposed algorithm is improved at high angular velocities. When the three-axis angular velocity is 10°/s, the rate is still 60.4%. At the same time, the proposed algorithm has good robustness to position noise and magnitude noise.


Author(s):  
Zhenjian Yang ◽  
Jiamei Shang ◽  
Zhongwei Zhang ◽  
Yan Zhang ◽  
Shudong Liu

Traditional image dehazing algorithms based on prior knowledge and deep learning rely on the atmospheric scattering model and are easy to cause color distortion and incomplete dehazing. To solve these problems, an end-to-end image dehazing algorithm based on residual attention mechanism is proposed in this paper. The network includes four modules: encoder, multi-scale feature extraction, feature fusion and decoder. The encoder module encodes the input haze image into feature map, which is convenient for subsequent feature extraction and reduces memory consumption; the multi-scale feature extraction module includes residual smoothed dilated convolution module, residual block and efficient channel attention, which can expand the receptive field and extract different scale features by filtering and weighting; the feature fusion module with efficient channel attention adjusts the channel weight dynamically, acquires rich context information and suppresses redundant information so as to enhance the ability to extract haze density image of the network; finally, the encoder module maps the fused feature nonlinearly to obtain the haze density image and then restores the haze free image. The qualitative and quantitative tests based on SOTS test set and natural haze images show good objective and subjective evaluation results. This algorithm improves the problems of color distortion and incomplete dehazing effectively.


Author(s):  
Vincenzo Dentamaro ◽  
Donato Impedovo ◽  
Giuseppe Pirlo ◽  
Giacomo Abbattista ◽  
Vincenzo Gattulli ◽  
...  

This chapter shows a practical end-to-end solution that allows the integration of noninvasive location-based marketing advertisements finally binding physical and virtual in-store customer presence. The goal of the solution is to digitalize the business and improve the customer experience with the indoor proximity-based iBeacon technology for personalized marketing advertising. The architecture uses cheap battery powered iBeacon devices, Android App and a recommender system for sending noninvasive advertisement in the right moment to the right customer. The intelligent combination of loyalty programs, personalized location-based marketing campaigns, and connection to existing CRM systems will enable the desirable increase in customer loyalty by also creating ideal circumstances for custom omnichannel marketing.


2021 ◽  
Vol 11 (3) ◽  
pp. 7217-7222
Author(s):  
S. Wali ◽  
M. H. U. Haq ◽  
M. Kazmi ◽  
S. A. Qazi

Non-Intrusive Load Monitoring (NILM) or load disaggregation aims to analyze power consumption by decomposing the energy measured at the aggregate level into constituent appliances level. The conventional load disaggregation framework consists of signal processing and machine learning-based pipelined architectures, respectively for explicit feature extraction and decision making. Manual feature selection in such load disaggregation frameworks leads to biased decisions that eventually reduce system performance. This paper presents an efficient End-to-End (E2E) approach-based unified architecture using Gated Recurrent Units (GRU) for NILM. The proposed approach eliminates explicit feature engineering and has a unified classification and prediction model for appliance power. This eventually reduces the computational cost and enhances response time. The performance of the proposed system is compared with conventional algorithms' with the use of recall, precision, accuracy, F1 score, the relative error in total energy and Mean Absolute Error (MAE). These evaluation metrics are calculated on the power consumption of top priority appliances of Reference Energy Disaggregation Dataset (REDD). The proposed architecture with an overall accuracy of 91.2 and MAE of 25.23 outperforms conventional methods for all electrical appliances. It has been showcased through a series of experiments that feature extraction and event-based approaches for NILM can readily be replaced with E2E deep learning techniques allowing simpler and cost-efficient implementation pathways.


Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 817
Author(s):  
Masud An-Nur Islam Fahim ◽  
Ho Yub Jung

Haze is a natural distortion to the real-life images due to the specific weather conditions. This distortion limits the perceptual fidelity, as well as information integrity, of a given image. Image dehazing for the observed images is a complicated task because of its ill-posed nature. This study offers the Deep-Dehaze network to retrieve haze-free images. Given an input, the proposed architecture uses four feature extraction modules to perform nonlinear feature extraction. We improvise the traditional U-Net architecture and the residual network to design our architecture. We also introduce the l1 spatial-edge loss function that enables our system to achieve better performance than that for the typical l1 and l2 loss function. Unlike other learning-based approaches, our network does not use any fusion connection for image dehazing. By training the image translation and dehazing network in an end-to-end manner, we can obtain better effects of both image translation and dehazing. Experimental results on synthetic and real-world images demonstrate that our model performs favorably against the state-of-the-art dehazing algorithms. We trained our network in an end-to-end manner and validated it on natural and synthetic hazy datasets. Our method shows favorable results on these datasets without any post-processing in contrast to the traditional approach.


Sign in / Sign up

Export Citation Format

Share Document