Stable and Unstable Solutions of the Mag Noh Problem*

Author(s):  
Andrey Beresnyak ◽  
Alexander Velikovich ◽  
John Giuliani ◽  
Arati Dasgupta
Keyword(s):  
2015 ◽  
Vol 9 (3) ◽  
pp. 2487-2502 ◽  
Author(s):  
Igor V. Lebed

Scenario of appearance and development of instability in problem of a flow around a solid sphere at rest is discussed. The scenario was created by solutions to the multimoment hydrodynamics equations, which were applied to investigate the unstable phenomena. These solutions allow interpreting Stokes flow, periodic pulsations of the recirculating zone in the wake behind the sphere, the phenomenon of vortex shedding observed experimentally. In accordance with the scenario, system loses its stability when entropy outflow through surface confining the system cannot be compensated by entropy produced within the system. The system does not find a new stable position after losing its stability, that is, the system remains further unstable. As Reynolds number grows, one unstable flow regime is replaced by another. The replacement is governed tendency of the system to discover fastest path to depart from the state of statistical equilibrium. This striving, however, does not lead the system to disintegration. Periodically, reverse solutions to the multimoment hydrodynamics equations change the nature of evolution and guide the unstable system in a highly unlikely direction. In case of unstable system, unlikely path meets the direction of approaching the state of statistical equilibrium. Such behavior of the system contradicts the scenario created by solutions to the classic hydrodynamics equations. Unstable solutions to the classic hydrodynamics equations are not fairly prolonged along time to interpret experiment. Stable solutions satisfactorily reproduce all observed stable medium states. As Reynolds number grows one stable solution is replaced by another. They are, however, incapable of reproducing any of unstable regimes recorded experimentally. In particular, stable solutions to the classic hydrodynamics equations cannot put anything in correspondence to any of observed vortex shedding modes. In accordance with our interpretation, the reason for this isthe classic hydrodynamics equations themselves.


2020 ◽  
Vol 50 (1) ◽  
pp. 239-253
Author(s):  
K. H. Brink ◽  
J. Pedlosky

AbstractThis contribution seeks to understand the vertical structure of linearized quasigeostrophic baroclinic modes when they are modified by the presence of a baroclinic mean flow and associated potential vorticity gradients. It is found that even modest, O(0.05 m s−1), mean flows can give rise to very substantial changes in modal structures, often in the sense of increased surface intensification. The extent to which stable modes are modified depends strongly on the direction of Rossby wave propagation. Further, baroclinically unstable solutions can appear, and a meaningful inviscid critical-layer solution can occur at the transition to instability when the horizontal gradient of potential vorticity changes sign at some depth within the water column. In addition, the gravest, n = 0, vertical stable mode is no longer strictly barotropic, but rather it can carry density variability at frequencies much higher than those possible for baroclinic (higher) Rossby wave modes. This finding appears to be consistent with oceanic current-meter observations that suggest temperature variability propagation even when the frequency is too high for traditional baroclinic Rossby waves to exist.


1991 ◽  
Vol 130 ◽  
pp. 103-111
Author(s):  
Reinhard Meinel

AbstractA local potential approach to nonlinear dynamo models which allows the use of variational techniques to investigate the problem of stability is introduced. The method applies at least to quasi-kinematic dynamo models, i.e. to models which include the back-reaction of the magnetic field on the fluid motion in a simplified way. A special application leads to a previously investigated one-dimensional dynamo model which shows a coexistence of a periodic solution (limit cycle) with two stable steady solutions of opposite polarities. The inclusion of some small-amplitude noise leads to interesting transition phenomena which may be of relevance to explain the behaviour of astrophysical dynamos. A simple dynamical system with a two-dimensional phase-space is used for illustration.


Sign in / Sign up

Export Citation Format

Share Document