Electromagnetic and thermal design of totally enclosed non-ventilated synchronous generator with interior permanent magnets

Author(s):  
Bojan Stumberger ◽  
Sebastijan Seme ◽  
Zdravko Praunseis ◽  
Miralem Hadziselimovic
2021 ◽  
Vol 11 (5) ◽  
pp. 2150
Author(s):  
Claudio Rossi ◽  
Alessio Pilati ◽  
Marco Bertoldi

This paper deals with the digital implementation of a motor control algorithm based on a unified machine model, thus usable with every traditional electric machine type (induction, brushless with interior permanent magnets, surface permanent magnets or pure reluctance). Starting from the machine equations in matrix form in continuous time, the paper exposes their discrete time transformation, suitable for digital implementation. Since the solution of these equations requires integration, the virtual division of the calculation time in sub-intervals is proposed to make the calculations more accurate. Optimization of this solver enables faster runs and higher precision especially when high rotating speed requires fast calculation time. The proposed solver is presented at different implementation levels, and its speed and accuracy performance are compared with standard solvers.


2021 ◽  
Vol 7 (7) ◽  
pp. 61-70
Author(s):  
Andrey A. TATEVOSYAN ◽  

A method for optimizing the parameters of a modular half-speed synchronous generator with permanent magnets (PMSG) and the generator voltage control system with a neural network-based algorithm are proposed. The basic design scheme of the modular half-speed PMSG is considered, which features a compact layout of the generator main parts, thereby ensuring the optimal use of the working volume, smaller sizes of the magnetic system, and smaller mass of the active materials used in manufacturing the machine. Owing to the simple and reliable design of the generator, its output parameters can be varied in a wide range with using standard electrical circuits for voltage stabilization and current rectification along with an additional voltage regulation unit. Owing to this feature, the design scheme of the considered generator has essential advantages over the existing analogs with a common cylindrical magnetic core. In view of these circumstances, the development of a high-efficient modular half-speed PMSG as an autonomous DC power source is of both scientific and practical interest; this generator can be used to supply power to a large range of electricity consumers located in rural areas, low-rise residential areas, military communities, allotments etc. In solving the problem of optimizing the generator’s magnetic system, the main electrical machine analysis equation is obtained. The optimal ratios of the winding wire mass to the mass of permanent magnets and of the PM height to the air gap value for achieving the maximum specific useful power output have been determined. An analytical correlation between the optimal design parameters of a half-speed modular PMSG and its power performance parameters has been established. The expediency to develop a neural network-based control system is shown. The number of load-bearing modules of the half-speed PMSG is determined depending on the wind velocity, load factor and the required output voltage. The neural network was trained on the examples of a training sample using a laboratory test bench. The neural network was implemented in the MatLab 2019b environment by constructing a synchronous generator simulation model in the Simulink software extension. The possibility of using the voltage control system of a half-speed modular PMSG with a microcontroller for operation of the neural network platform of the Arduino family (ArduinoDue) independently of the PC is shown.


2020 ◽  
Vol 10 (17) ◽  
pp. 5881
Author(s):  
Selma Čorović ◽  
Damijan Miljavec

This paper investigates mechanical vibrations of an interior permanent magnet (IPM) synchronous electrical motor designed for a wide range of speeds by virtue of the modal and rotordynamic theory. Mechanical vibrations of the case study IPM motor components were detected and analyzed via numerical, analytical and experimental investigation. First, a finite element-based model of the stator assembly including windings was set up and validated with experimental and analytical results. Second, the influence of the presence of the motor housing on the natural frequencies of the stator and windings was investigated by virtue of numerical modal analysis. The experimental and numerical modal analyses were further carried out on the IPM rotor configuration. The results show that the natural frequencies of the IPM rotor increase due to the presence of the magnets. Finally, detailed numerical rotordynamic analysis was performed in order to investigate the most critical speeds of the IPM rotor with bearings. Based on the obtained results, the key parameters related to mechanical vibrations response phenomena, which are important when designing electrical motors with interior permanent magnets, are provided. The main findings reported here can be used for experimental and theoretical mechanical vibration analysis of other types of rotating electrical machines.


2018 ◽  
Vol 16 ◽  
pp. 03004 ◽  
Author(s):  
Lucjan Setlak ◽  
Rafał Kowalik

Based on the mathematical model of synchronous electric machine, basing on permanent magnets, presented in this paper, the key importance of alternator AC power sources in the form of generator (for conventional aircraft) and in the form of integrated unit starter/AC synchronous generator S/G AC (with respect to advanced aircraft concept in the field of more/all electric power MEA/AEA) was highlighted. In addition, through the analysis and selected simulations of the power supply system of a modern aircrafts, sources of onboard electrical energy (synchronous generator, integrated unit starter/AC generator) were located in board autonomic power system ASE (EPS, PES). Key components of this system are the electro-energetic power system EPS and the energo-electronic power system PES. Additionally, the analysis and exemplary simulations of key electricity sources based on mathematical models have contributed to highlighting the main practical applications in line with the trend of a more electric aircraft.


2009 ◽  
Vol 129 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Yasuhiro Matsui ◽  
Takahito Hayamizu ◽  
Kazuo Shima ◽  
Tadashi Fukami ◽  
Ryoichi Hanaoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document