Analysis of the Technological Process of Egg Incubation and Formulation of the Control Problem

Author(s):  
E.S. Duvanov ◽  
Y.I. Kudinov ◽  
F.F. Pashchenko ◽  
V.S. Duvanova
2020 ◽  
Vol 26 ◽  
pp. 78
Author(s):  
Thirupathi Gudi ◽  
Ramesh Ch. Sau

We study an energy space-based approach for the Dirichlet boundary optimal control problem governed by the Laplace equation with control constraints. The optimality system results in a simplified Signorini type problem for control which is coupled with boundary value problems for state and costate variables. We propose a finite element based numerical method using the linear Lagrange finite element spaces with discrete control constraints at the Lagrange nodes. The analysis is presented in a combination for both the gradient and the L2 cost functional. A priori error estimates of optimal order in the energy norm is derived up to the regularity of the solution for both the cases. Theoretical results are illustrated by some numerical experiments.


2020 ◽  
Vol 7 (3) ◽  
pp. 11-22
Author(s):  
VALERY ANDREEV ◽  
◽  
ALEXANDER POPOV

A reduced model has been developed to describe the time evolution of a discharge in an iron core tokamak, taking into account the nonlinear behavior of the ferromagnetic during the discharge. The calculation of the discharge scenario and program regime in the tokamak is formulated as an inverse problem - the optimal control problem. The methods for solving the problem are compared and the analysis of the correctness and stability of the control problem is carried out. A model of “quasi-optimal” control is proposed, which allows one to take into account real power sources. The discharge scenarios are calculated for the T-15 tokamak with an iron core.


2020 ◽  
Vol 7 (2) ◽  
pp. 21-28
Author(s):  
SALI RADZHAPOV ◽  
◽  
RUSTAM RAKHIMOV ◽  
BEGJAN RADZHAPOV ◽  
MARS ZUFAROV

The article describes the developed radiometer for Express measurement of alpha radiation of radioactive elements based on a large-diameter silicon detector. The main element of the PPD detector is made using computer mathematical modeling of all stages of the technological process of manufacturing detectors, taking into account at each stage the degree of influence of the properties of the initial silicon on the electrophysical and radiometric characteristics of the detector. Detectors are manufactured for certain types of devices. The developed radiometer is designed to measure alpha radiation of natural isotopes (238U, 234U, 232Th, 226Ra, 222Rn, 218Po, 214Bi, etc.) in various environments. It also shows the principle of operation of the device, provides a block diagram of the measuring complex, describes the electronic components of the radiometer, as well as the block diagram. Signal transformations (spectrum transfer, filtering, accumulation) are implemented programmatically on the basis of a digital processing module. The device can detect the presence of specific elements in various environments, as well as protect people from the harmful effects of adverse radiation and can be used both in the field and stationary.


Sign in / Sign up

Export Citation Format

Share Document